Journal of Industrial and Management Optimization, Год журнала: 2024, Номер 21(2), С. 1630 - 1654
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Industrial and Management Optimization, Год журнала: 2024, Номер 21(2), С. 1630 - 1654
Опубликована: Ноя. 1, 2024
Язык: Английский
IET Collaborative Intelligent Manufacturing, Год журнала: 2023, Номер 5(1)
Опубликована: Март 1, 2023
Abstract An efficient manufacturing system is key to maintaining a healthy economy today. With the rapid development of science and technology progress human society, modern becoming increasingly complex, posing new challenges both academia industry. Ever since beginning industrialisation, leaps in have always accompanied technological breakthroughs from other fields, for example, mechanics, physics, computational science. Recently, machine learning (ML) technology, one crucial subjects artificial intelligence, has made remarkable many areas. This study thoroughly reviews how ML, specifically deep (reinforcement) learning, motivates ideas addressing challenging problems systems. We collect literature targeting three aspects: scheduling, packing, routing, which correspond pivotal cooperative production links today's system, that is, production, logistics respectively. For each aspect, we first present discuss state‐of‐the‐art research. Then summarise analyse trends point out future research opportunities challenges.
Язык: Английский
Процитировано
28IEEE Transactions on Intelligent Transportation Systems, Год журнала: 2024, Номер 25(6), С. 4754 - 4772
Опубликована: Янв. 2, 2024
This paper provides a systematic overview of machine learning methods applied to solve NP-hard Vehicle Routing Problems (VRPs). Recently, there has been great interest from both the and operations research communities in solving VRPs either through pure or by combining them with traditional handcrafted heuristics. We present taxonomy studies on paradigms, solution structures, underlying models, algorithms. Detailed results state-of-the-art are presented, demonstrating their competitiveness approaches. The survey highlights advantages learning-based models that aim exploit symmetry VRP solutions. outlines future directions incorporate solutions address challenges modern transportation systems.
Язык: Английский
Процитировано
16Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126961 - 126961
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1International Journal of Production Economics, Год журнала: 2023, Номер 268, С. 109102 - 109102
Опубликована: Ноя. 20, 2023
Язык: Английский
Процитировано
20IEEE Transactions on Intelligent Transportation Systems, Год журнала: 2024, Номер 25(8), С. 9253 - 9267
Опубликована: Авг. 1, 2024
Crowdshipping problem can be challenging as the platform are continuously but sporadically receiving crowdshippers and delivery tasks with heterogeneous origin destination. In this paper, dynamic multi-vehicle pickup (DMV-PDPC) is considered. Leveraging deep reinforcement learning framework, attention model centralized vehicle network (AMCVN) method developed. Unlike traditional heuristic or existing vehicle-changing methods, AMCVN integrates a (CVN) that observe state information of all vehicles, enhancing its overall performance. each decision-making step, CVN monitors vehicles selects one vehicles. Subsequently, attention-based route generating (RGN) determines next node to visited by chosen vehicle. Instead using penalty term in reward function regulate sequence visits nodes, more precise control method, namely rolling mask scheme (RMS), implemented. The method's evaluation carried out via simulation experiment real-world road network. This demonstrates proposed effectively tackles DMV-PDPC challenge, outperforming current state-of-the-art learning-based models methods. Moreover, shows exceptional generalization capabilities, evidenced adaptability different numbers
Язык: Английский
Процитировано
6IEEE Transactions on Intelligent Transportation Systems, Год журнала: 2023, Номер 24(12), С. 15652 - 15666
Опубликована: Март 16, 2023
Airport ground handling (AGH) offers necessary operations to flights during their turnarounds and is of great importance the efficiency airport management economics aviation. Such a problem involves interplay among that leads NP-hard problems with complex constraints. Hence, existing methods for AGH are usually designed massive domain knowledge but still fail yield high-quality solutions efficiently. In this paper, we aim enhance solution quality computation solving AGH. Particularly, first model as multiple-fleet vehicle routing (VRP) miscellaneous constraints including precedence, time windows, capacity. Then propose construction framework decomposes into sub-problems (i.e., VRPs) in fleets present neural method construct these sub-problems. specific, resort deep learning parameterize heuristic policy an attention-based network trained reinforcement learning, which shared across all Extensive experiments demonstrate our significantly outperforms classic meta-heuristics, heuristics specialized Besides, empirically verify generalizes well instances large numbers or varying parameters, can be readily adapted solve real-time stochastic flight arrivals. Our code publicly available at: https://github.com/RoyalSkye/AGH.
Язык: Английский
Процитировано
11Swarm and Evolutionary Computation, Год журнала: 2025, Номер 93, С. 101858 - 101858
Опубликована: Янв. 28, 2025
Язык: Английский
Процитировано
0International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 138, С. 104454 - 104454
Опубликована: Март 5, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер 278, С. 127314 - 127314
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 130266 - 130266
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0