Signal Processing, Год журнала: 2024, Номер 230, С. 109844 - 109844
Опубликована: Дек. 12, 2024
Язык: Английский
Signal Processing, Год журнала: 2024, Номер 230, С. 109844 - 109844
Опубликована: Дек. 12, 2024
Язык: Английский
EURASIP Journal on Wireless Communications and Networking, Год журнала: 2025, Номер 2025(1)
Опубликована: Март 21, 2025
Язык: Английский
Процитировано
1Sensors, Год журнала: 2025, Номер 25(11), С. 3403 - 3403
Опубликована: Май 28, 2025
The integration of Unmanned Aerial Vehicles (UAVs) into Mobile Edge Computing (MEC) systems has emerged as a transformative solution for latency-sensitive applications, leveraging UAVs’ unique advantages in mobility, flexible deployment, and on-demand service provisioning. This paper proposes novel multi-agent reinforcement learning framework, termed Multi-Agent Twin Delayed Deep Deterministic Policy Gradient Task Offloading Resource Allocation (MATD3-TORA), to optimize task offloading resource allocation UAV-assisted MEC networks. framework enables collaborative decision making among multiple UAVs efficiently serve sparsely distributed ground mobile devices (MDs) establish an integrated communication, computational model, which formulates joint optimization problem aimed at minimizing the weighted sum processing latency UAV energy consumption. Extensive experiments demonstrate that algorithm achieves improvements system efficiency compared conventional approaches. results highlight MATD3-TORA’s effectiveness addressing UAV-MEC challenges, including mobility–energy tradeoffs, making, real-time allocation.
Язык: Английский
Процитировано
0Signal Processing, Год журнала: 2024, Номер 230, С. 109844 - 109844
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
0