High Payload Image Steganography Using DNN Classification and Adaptive Difference Expansion
Wireless Personal Communications,
Год журнала:
2024,
Номер
134(3), С. 1349 - 1366
Опубликована: Фев. 1, 2024
Язык: Английский
An Intelligent Facial Expression Recognition System Using a Hybrid Deep Convolutional Neural Network for Multimedia Applications
Applied Sciences,
Год журнала:
2023,
Номер
13(21), С. 12049 - 12049
Опубликована: Ноя. 5, 2023
Recognizing
facial
expressions
plays
a
crucial
role
in
various
multimedia
applications,
such
as
human–computer
interactions
and
the
functioning
of
autonomous
vehicles.
This
paper
introduces
hybrid
feature
extraction
network
model
to
bolster
discriminative
capacity
emotional
features
for
applications.
The
proposed
comprises
convolutional
neural
(CNN)
deep
belief
(DBN)
series.
First,
spatial
CNN
processed
static
images,
followed
by
temporal
network.
CNNs
were
fine-tuned
based
on
expression
recognition
(FER)
datasets.
A
was
then
applied
integrate
segment-level
features.
Deep
fusion
networks
jointly
used
learn
spatiotemporal
discrimination
purposes.
Due
its
generalization
capabilities,
we
multi-class
support
vector
machine
classifier
classify
seven
basic
emotions
model.
exhibited
98.14%
performance
JaFFE
database,
95.29%
KDEF
98.86%
RaFD
database.
It
is
shown
that
method
effective
all
three
databases,
compared
with
previous
schemes
JAFFE,
KDEF,
databases.
Язык: Английский
INVESTIGASI STEGO FILE MENGGUNAKAN FRAMEWORK NATIONAL INSTITUTE OF JUSTICE
Hajar Hajar,
Hermansa Hermansa,
Ilcham Ilcham
и другие.
CONTEN Computer and Network Technology,
Год журнала:
2024,
Номер
4(1), С. 31 - 42
Опубликована: Авг. 1, 2024
Steganografi
merupakan
salah
satu
teknik
anti-forensik
yang
memungkinkan
pelaku
kejahatan
untuk
menyembunyikan
informasi
ke
dalam
pesan
lain,
sehingga
investigator
akan
menghadapi
kesulitan
mendapatkan
bukti
asli
pada
tersebut.
Oleh
karena
itu,
seorang
dituntut
memiliki
kemampuan
menemukan
serta
melakukan
ekstraksi
dengan
menggunakan
alat
tepat
saat
membuka
telah
disisipi
steganografi.
Penelitian
ini
menganalisis
digital
metode
static
forensics
menerapkan
lima
tahapan
framework
National
Institute
of
Justice
(NIJ)
steganografi
file
disusupi
berdasarkan
skenario
kasus
melibatkan
digital.
Alat
digunakan
meliputi
FTK
Imager,
Autopsy,
WinHex,
Hiderman,
dan
StegSpy.
Hasil
menunjukkan
bahwa
dari
10
diskenariokan
steganografi,
9
berhasil
diekstraksi
tingkat
keberhasilan
90%,
sedangkan
10%
lainnya
tidak
ditemukan
Dapat
disimpulkan
hasil
dapat
dijadikan
sah
menurut
hukum.
AI-Enhanced LSB Steganography Interface: Concealed Data Embedding Framework
Raja Rajeswari N,
M Meenadshi
2022 8th International Conference on Smart Structures and Systems (ICSSS),
Год журнала:
2023,
Номер
unknown, С. 1 - 4
Опубликована: Ноя. 23, 2023
Steganography
involves
concealing
text-based
secret
data
within
non-text
files
such
as
image,
audio,
or
video
files,
with
the
extraction
of
hidden
taking
place
at
its
destination.
This
avoids
detection.
Therefore,
it
becomes
challenging
for
anyone
to
detect
presence
a
concealed
message
highlighting
increasing
importance
privacy
in
contemporary
times.
The
primary
objective
is
enable
clandestine
communication
between
two
individuals,
typically
involving
processes
encoding
and
decoding.
project
specifically
focuses
on
image
Steganography,
allowing
decoding
an
file.
Through
utilization
steganography,
individual
can
conceal
substantial
amount
text,
comprising
thousands
words,
standard-sized
image.
To
implement
this
approach,
Python
Image
Library
(PIL)
employed
conjunction
Tkinter
framework.
LSB
(Least
Significant
Bit)
steganography
techniques
are
applied
encryption
decryption
functionalities.
goal
create
application
that
employs
insertion
encode
cover
and,
user-friendly
manner,
decode
original
from
embedded
Additionally,
AI-based
methodologies
integrated
enhance
security
fortify
concealment
information
images,
showcasing
synergy
advanced
traditional
steganographic
methods.
Язык: Английский