
Environment International, Год журнала: 2024, Номер 193, С. 109101 - 109101
Опубликована: Окт. 28, 2024
Язык: Английский
Environment International, Год журнала: 2024, Номер 193, С. 109101 - 109101
Опубликована: Окт. 28, 2024
Язык: Английский
Environmental Data Science, Год журнала: 2025, Номер 4
Опубликована: Янв. 1, 2025
Abstract The increasing size and severity of wildfires across the western United States have generated dangerous levels PM 2.5 concentrations in recent years. In a changing climate, expanding use prescribed fires is widely considered to be most robust fire mitigation strategy. However, reliably forecasting potential air quality impact from fires, which critical planning fires’ location time, at hourly daily time scales remains challenging problem. this paper, we introduce spatio-temporal graph neural network (GNN)-based model for predictions California. Utilizing two-step approach, our predict net ambient concentrations, are used estimate wildfire contributions. Integrating GNN-based with simulations historically propose novel framework forecast their impact. This determines that March optimal month implementing California quantifies trade-offs involved conducting more outside peak season.
Язык: Английский
Процитировано
0Environment International, Год журнала: 2024, Номер 193, С. 109101 - 109101
Опубликована: Окт. 28, 2024
Язык: Английский
Процитировано
1