Applied Soft Computing, Год журнала: 2025, Номер 177, С. 113184 - 113184
Опубликована: Апрель 28, 2025
Язык: Английский
Applied Soft Computing, Год журнала: 2025, Номер 177, С. 113184 - 113184
Опубликована: Апрель 28, 2025
Язык: Английский
Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2281 - 2281
Опубликована: Фев. 20, 2025
Uncertainty in processing times is a key issue distributed production; it severely affects scheduling accuracy. In this study, we investigate dynamic flexible job shop problem with variable (DDFJSP-VPT), which the time follows normal distribution. First, mathematical model established by simultaneously considering makespan, tardiness, and total factory load. Second, chance-constrained approach employed to predict uncertain generate robust initial schedule. Then, heuristic method involves left-shift strategy, an insertion-based local adjustment DMOGWO-based global rescheduling strategy developed dynamically adjust plan response context of uncertainty. Moreover, hybrid initialization scheme, discrete crossover, mutation operations are designed high-quality population update wolf pack, enabling GWO effectively solve problem. Based on parameter sensitivity study comparison four algorithms, algorithm’s stability effectiveness both static environments demonstrated. Finally, experimental results show that our can achieve much better performance than other rules-based reactive methods hybrid-shift strategy. The utility prediction also validated.
Язык: Английский
Процитировано
0Swarm and Evolutionary Computation, Год журнала: 2025, Номер unknown, С. 101902 - 101902
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2025, Номер 177, С. 113184 - 113184
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0