Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Computer and Communications, Год журнала: 2024, Номер 12(10), С. 78 - 93
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
9Sustainability, Год журнала: 2025, Номер 17(6), С. 2386 - 2386
Опубликована: Март 9, 2025
The integration of Internet Things (IoT) technologies into solar energy systems has transformed them smart systems, enabling advanced real-time monitoring, control, and optimization. However, this connectivity also expands the attack surface, exposing critical components to cybersecurity threats that could compromise system reliability long-term sustainability. This study presents a comprehensive threat modeling analysis for IoT-based using STRIDE model systematically identify, categorize, assess potential security risks. These risks, if unmitigated, disrupt operations hinder large-scale adoption energy. methodology begins with use case outlining architecture key components, including sensors, PV modules, IoT nodes, gateways, cloud infrastructure, remote-access interfaces. A Data Flow Diagram (DFD) was developed visualize data flow identify trust boundaries. applied classify threats, such as spoofing, tampering, repudiation, information disclosure, denial service, elevation privilege across their interactions. DREAD risk assessment then used prioritize based on Damage Potential, Reproducibility, Exploitability, Affected Users, Disability. results indicate most fall high-risk category, scores ranging from 2.6 2.8, emphasizing need targeted mitigation. proposes recommendations address identified enhance resilience IoT-enabled systems. By securing these infrastructures, research supports transition sustainable by ensuring integrity protection against cyber threats. combined provides robust framework identifying, categorizing, prioritizing effective resource allocation measures. findings offer insights safeguarding renewable evolving contributing global sustainability goals in an increasingly interconnected world.
Язык: Английский
Процитировано
0Applied Mathematics and Nonlinear Sciences, Год журнала: 2025, Номер 10(1)
Опубликована: Янв. 1, 2025
Abstract Trusted computing, as a technology to improve the security of computer systems, has developed trusted 3.0 stage. This paper utilizes discrete rough set theory research on network security. The decision support system constructed with B/S structure includes three modules: representation layer, business layer and data layer. In analysis module, risk assessment model is based sets. preprocesses discretizes data, constructs knowledge base for through attribute approximation rule extraction. rules are extracted utilized support. cybersecurity posture under methodology this very close expert’s expected results, maximum relative error 2.54%, indicating that decisions can be made reference results model.
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(11), С. 207 - 223
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 34 - 54
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Journal of Computer and Communications, Год журнала: 2024, Номер 12(11), С. 141 - 161
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0American Journal of Industrial and Business Management, Год журнала: 2024, Номер 14(11), С. 1545 - 1561
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Journal of Infrastructure Policy and Development, Год журнала: 2024, Номер 8(15), С. 8848 - 8848
Опубликована: Дек. 13, 2024
The usage of cybersecurity is growing steadily because it beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone connected through the internet. It’s much easier for a thief connect important data cyber-attacks. Everyone needs precious personal and sustainable infrastructure development in science. However, systems protecting our using existing difficult. There are different types threats. It be phishing, malware, ransomware, so on. To prevent these attacks, need advanced systems. Many software helps not able early detect suspicious internet threat exchanges. This research used machine learning models enhance detection. Reducing cyberattacks enhancing protection; this system makes possible browse anywhere securely. Kaggle dataset was collected build technology untrustworthy online exchanges early. obtain better results accuracy, few pre-processing approaches were applied. Feature engineering applied improve quality Ultimately, random forest, gradient boosting, XGBoost, Light GBM achieve goal. Random forest obtained 96% which best helpful get good outcome social system.
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 134 - 150
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0