Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Computer and Communications, Год журнала: 2024, Номер 12(10), С. 78 - 93
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
9Advances in computational intelligence and robotics book series, Год журнала: 2025, Номер unknown, С. 103 - 130
Опубликована: Май 9, 2025
As industrial networks have become increasingly complex, they the target of choice for cyber attacks, and thus there is a need sophisticated anomaly detection mechanisms. This chapter delves into deep learning-based solutions to detect mitigate attacks in Industrial IoT (IIoT) Control Systems (ICS). Utilizing methods such as autoencoders, recurrent neural (RNNs), convolutional (CNNs), learning systems are able identify anomalies from normal network operations real time. The covers supervised unsupervised methods, feature engineering's role, challenges posed by dataset availability, adversarial explainability detection. applications case studies illustrate how improves cybersecurity through adaptive, scalable, smart threat
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(11), С. 207 - 223
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 34 - 54
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Journal of Computer and Communications, Год журнала: 2024, Номер 12(11), С. 141 - 161
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0American Journal of Industrial and Business Management, Год журнала: 2024, Номер 14(11), С. 1545 - 1561
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Journal of Infrastructure Policy and Development, Год журнала: 2024, Номер 8(15), С. 8848 - 8848
Опубликована: Дек. 13, 2024
The usage of cybersecurity is growing steadily because it beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone connected through the internet. It’s much easier for a thief connect important data cyber-attacks. Everyone needs precious personal and sustainable infrastructure development in science. However, systems protecting our using existing difficult. There are different types threats. It be phishing, malware, ransomware, so on. To prevent these attacks, need advanced systems. Many software helps not able early detect suspicious internet threat exchanges. This research used machine learning models enhance detection. Reducing cyberattacks enhancing protection; this system makes possible browse anywhere securely. Kaggle dataset was collected build technology untrustworthy online exchanges early. obtain better results accuracy, few pre-processing approaches were applied. Feature engineering applied improve quality Ultimately, random forest, gradient boosting, XGBoost, Light GBM achieve goal. Random forest obtained 96% which best helpful get good outcome social system.
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 134 - 150
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0