
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Авг. 17, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Авг. 17, 2024
Язык: Английский
The International Journal of Biochemistry & Cell Biology, Год журнала: 2024, Номер 175, С. 106646 - 106646
Опубликована: Авг. 23, 2024
Язык: Английский
Процитировано
1Cancer Cell International, Год журнала: 2024, Номер 24(1)
Опубликована: Авг. 24, 2024
Prostate cancer is one of the most common cancers in men with a significant proportion patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles tumor progression and can potentially serve as prognostic therapeutic biomarkers PCa. This study aimed develop signature for BCR PCa using PCD-related genes. We conducted an analysis 19 different modes PCD comprehensive model. Bulk transcriptomic, single-cell genomic, clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, GSE193337. analyzed expression mutations constructed, evaluated, validated Ten found be associated PCa, specific patterns exhibited by various components within microenvironment. Through Lasso Cox regression analysis, we established Cell Death Index (PCDI) utilizing 11-gene signature. High PCDI values five independent datasets increased risk patients. Notably, older age advanced T N staging higher values. By combining staging, constructed nomogram enhanced predictive performance. Additionally, high significantly correlated decreased drug sensitivity, drugs such Docetaxel Methotrexate. Patients lower demonstrated immunophenoscores (IPS), suggesting response rate immune therapy. Furthermore, was checkpoint genes key microenvironment, macrophages, cells, NK cells. Finally, specimens differential PCDI-related PCDRGs at both gene protein levels. In conclusion, developed novel PCD-based feature that successfully predicted provided insights into sensitivity potential These findings have implications treatment
Язык: Английский
Процитировано
1Cell Biology International, Год журнала: 2024, Номер 48(12), С. 1816 - 1835
Опубликована: Авг. 27, 2024
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor, highlighting a significant need for reliable predictive models to assess clinical prognosis, disease progression, and drug sensitivity. Recent studies have highlighted critical role of various programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic death, NETotic parthanatos, lysosome-dependent autophagy-dependent alkaliptosis, oxeiptosis, disulfidptosis, in tumor development. Therefore, by investigating these we aimed develop model HCC prognosis We analyzed transcriptome, single-cell genomic, information using data from TCGA-LIHC, GSE14520, GSE45436, GSE166635 datasets. Machine learning algorithms were used establish index (CDI) with seven gene signatures, which was validated across three independent datasets, showing that high CDI correlates poorer prognosis. Unsupervised clustering revealed molecular subtypes distinct biological processes. Furthermore, nomogram integrating demonstrated good performance. associated immune checkpoint genes microenvironment components transcriptome analysis. Drug sensitivity analysis indicated patients may be resistant oxaliplatin cisplatin but sensitive axitinib sorafenib. In summary, our offers precise prediction outcomes HCC, providing valuable insights personalized treatment strategies.
Язык: Английский
Процитировано
1Tissue and Cell, Год журнала: 2024, Номер 91, С. 102586 - 102586
Опубликована: Окт. 16, 2024
Язык: Английский
Процитировано
1Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Авг. 17, 2024
Язык: Английский
Процитировано
0