Environmental Pollution, Год журнала: 2024, Номер 361, С. 124839 - 124839
Опубликована: Авг. 28, 2024
Язык: Английский
Environmental Pollution, Год журнала: 2024, Номер 361, С. 124839 - 124839
Опубликована: Авг. 28, 2024
Язык: Английский
Pediatric Obesity, Год журнала: 2025, Номер unknown
Опубликована: Март 17, 2025
Summary Background and Objectives To explore the relationship between constant exposure to phthalates (PAEs) overweight/obesity role of lifestyle in children. Methods This study conducted five repeated follow‐up visits with 829 children analysed data from 740 Logistic regression models were used evaluate association PAE exposure, overweight/obesity. Results The found that high levels PAEs may increase risk obesity girls, is higher girls an unhealthy lifestyle. In group compared low (CL) PAEs, odds ratios (ORs) for (CH) 2.99 (1.11, 8.05) 11.58 (1.38, 96.87), respectively. addition, interaction effect was observed on girls. Conclusion These results suggest importance reducing reduce obesity, especially individuals lifestyles. government should strengthen formulation regulations standards while guiding parents use fewer plastic products.
Язык: Английский
Процитировано
0Environmental Pollution, Год журнала: 2025, Номер unknown, С. 126396 - 126396
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 25, 2025
Due to the diverse molecular structures of chemical compounds and their intricate biological pathways toxicity, predicting reproductive developmental toxicity remains a challenge. Traditional Quantitative Structure-Activity Relationship models that rely on descriptors have limitations in capturing complexity achieve high predictive performance. In this study, we developed descriptor-free deep learning model by constructing Graph Convolutional Network designed with multi-head attention gated skip-connections predict toxicity. By integrating structural alerts directly related into model, enabled more effective toxicologically relevant substructures. We built dataset 4,514 compounds, including both organic inorganic substances. The was trained validated using stratified 5-fold cross-validation. It demonstrated excellent performance, achieving an accuracy 81.19% test set. To address interpretability identified subgraphs corresponding known alerts, providing insights model's decision-making process. This study conducted accordance OECD principles for reliable modeling contributes development robust silico prediction.
Язык: Английский
Процитировано
0Environmental Pollution, Год журнала: 2024, Номер 361, С. 124839 - 124839
Опубликована: Авг. 28, 2024
Язык: Английский
Процитировано
1