Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, Год журнала: 2025, Номер unknown, С. 189333 - 189333
Опубликована: Апрель 1, 2025
Язык: Английский
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, Год журнала: 2025, Номер unknown, С. 189333 - 189333
Опубликована: Апрель 1, 2025
Язык: Английский
Frontiers in Bioengineering and Biotechnology, Год журнала: 2025, Номер 13
Опубликована: Март 12, 2025
The advent of mRNA vaccines, accelerated by the global response to COVID-19 pandemic, marks a transformative shift in vaccine technology. In this article, we discuss development, current applications, and prospects vaccines for both prevention treatment infectious diseases oncology. By leveraging capacity encode antigens within host cells directly, provide versatile scalable platform suitable addressing broad spectrum pathogens tumor-specific antigens. We highlight recent advancements design, innovative delivery mechanisms, ongoing clinical trials, with particular emphasis on their efficacy combating diseases, such as COVID-19, Zika, influenza, well emerging potential cancer immunotherapy. also address critical challenges, including stability, optimization immune responses, broader issue accessibility. Finally, review strategies advancing next-generation aim overcoming limitations technology enhancing preventive therapeutic approaches oncological diseases.
Язык: Английский
Процитировано
1International Journal of Biological Macromolecules, Год журнала: 2025, Номер 304, С. 141002 - 141002
Опубликована: Фев. 12, 2025
Язык: Английский
Процитировано
0BioChem, Год журнала: 2025, Номер 5(2), С. 5 - 5
Опубликована: Март 31, 2025
Personalized cancer vaccines are a promising immunotherapy targeting patient-specific tumor neoantigens, yet their design and efficacy remain challenging. Recent advances in artificial intelligence (AI) provide powerful tools to enhance multiple stages of vaccine development. This review systematically evaluates AI applications personalized research over the past five years, focusing on four key areas: neoantigen discovery, codon optimization, untranslated region (UTR) sequence generation, mRNA design. We examine model architectures (e.g., neural networks), datasets (from omics high-throughput assays), outcomes improving In machine learning deep models integrate peptide–MHC binding, antigen processing, T cell receptor recognition immunogenic identification. For for UTR improve protein expression stability beyond traditional methods. AI-driven strategies also optimize constructs formulations, including secondary structures nanoparticle delivery systems. discuss how these approaches converge streamline effective development, while addressing challenges such as data scarcity, heterogeneity, interpretability. By leveraging innovations, future may see unprecedented improvements both efficiency clinical effectiveness.
Язык: Английский
Процитировано
0Critical Reviews in Oncology/Hematology, Год журнала: 2025, Номер unknown, С. 104715 - 104715
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, Год журнала: 2025, Номер unknown, С. 189333 - 189333
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0