
The Neuroscience Journal of Shefaye Khatam, Год журнала: 2024, Номер 13(1), С. 63 - 73
Опубликована: Дек. 1, 2024
Язык: Английский
The Neuroscience Journal of Shefaye Khatam, Год журнала: 2024, Номер 13(1), С. 63 - 73
Опубликована: Дек. 1, 2024
Язык: Английский
International Journal of Statistics in Medical Research, Год журнала: 2025, Номер 14, С. 145 - 152
Опубликована: Март 25, 2025
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and functional deterioration. The early accurate classification of AD crucial for timely intervention management. This study utilizes the Boruta feature selection method to identify most relevant features classification, selecting top 15 based on importance ranking. Three machine learning models—Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), Support Vector Machines (SVM)—were evaluated using accuracy, precision, recall, F1-score as performance metrics. LSTM model demonstrated highest accuracy (89.30%), outperforming DNN (88.14%) SVM (84.19%), owing its capability capturing temporal dependencies in inpatient data. Results indicate that deep models offer superior compared traditional approaches classification. emphasizes cognitive, lifestyle, metabolic diagnosis while acknowledging limitations such dataset constraints interpretability. Future research should improve explainability, incorporate multi-modal data, leverage real-time monitoring techniques enhanced detection.
Язык: Английский
Процитировано
0The Neuroscience Journal of Shefaye Khatam, Год журнала: 2024, Номер 13(1), С. 63 - 73
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0