A multicenter study on developing a prognostic model for severe fever with thrombocytopenia syndrome using machine learning
Frontiers in Microbiology,
Год журнала:
2025,
Номер
16
Опубликована: Март 19, 2025
Background
Severe
Fever
with
Thrombocytopenia
Syndrome
(SFTS)
is
a
disease
caused
by
infection
the
virus
(SFTSV),
novel
Bunyavirus.
Accurate
prognostic
assessment
crucial
for
developing
individualized
prevention
and
treatment
strategies.
However,
machine
learning
models
SFTS
are
rare
need
further
improvement
clinical
validation.
Objective
This
study
aims
to
develop
validate
an
interpretable
model
based
on
(ML)
methods
enhance
understanding
of
progression.
Methods
multicenter
retrospective
analyzed
patient
data
from
two
provinces
in
China.
The
derivation
cohort
included
292
patients
treated
at
Second
Hospital
Nanjing
January
2022
December
2023,
7:3
split
training
internal
external
validation
consisted
104
First
Affiliated
Wannan
Medical
College
during
same
period.
Twenty-four
commonly
available
features
were
selected,
Boruta
algorithm
identified
12
candidate
predictors,
ranked
Z-scores,
which
progressively
incorporated
into
10
models.
Model
performance
was
assessed
using
area
under
receiver-operating-characteristic
curve
(AUC),
accuracy,
recall,
F1
score.
utility
best-performing
evaluated
through
decision
analysis
(DCA)
net
benefit.
Robustness
tested
10-fold
cross-validation,
feature
importance
explained
SHapley
Additive
exPlanation
(SHAP)
both
globally
locally.
Results
Among
models,
XGBoost
demonstrated
best
overall
discriminatory
ability.
Considering
AUC
index
simplicity,
final
7
key
constructed.
showed
high
predictive
accuracy
outcomes
(AUC
=
0.911,
95%
CI:
0.842–0.967)
validations
0.891,
0.786–0.977).
A
tool
this
has
been
developed
implemented
Streamlit
framework.
Conclusion
XGBoost-based
shows
translated
tool.
model's
serve
as
valuable
indicators
early
prognosis
SFTS,
warranting
close
attention
healthcare
professionals
practice.
Язык: Английский
Erythrocytic indices of clinical blood analysis and reference intervals among men and women aged 18–45 years
Patient-Oriented Medicine and Pharmacy,
Год журнала:
2025,
Номер
2(4), С. 82 - 93
Опубликована: Фев. 3, 2025
Relevance.
The
determination
of
reference
intervals
(RI)
in
clinical
blood
analysis
for
erythrocytes
and
their
specific
parameters:
mean
corpuscular
volume
(MCV),
hemoglobin
(MCH),
concentration
(MCHC),
red
cell
distribution
width
(RDW),
allows
us
to
use
these
parameters
differential
diagnostics
various
pathological
conditions
from
variants
norm.
Objective.
Calculate
the
RI
erythrocyte
a
complete
count
patients
certain
age
group
(18–
45
years)
with
normal
indicators
iron
homeostasis.
ranges
may
vary
depending
on
analytical
systems
diagnostic
reagents
used.
Material
methods.
study
included
samples
158
healthy
volunteers
aged
18–45
years,
whom
127
(80.4
%)
were
women
31
(19.6
men.
data
obtained
«KDL-TEST»
company
database
period
01.01.2023
01.01.2024.
criteria
inclusion
were:
18
test
results,
homeostasis
within
laboratory,
absence
signs
an
inflammatory
process
based
levels
C-reactive
protein
(CRP).
Analyses
performed
using
hematological
analyzer
Mindray
BC-
6800
(manufactured
by
Mindray,
China)
automatic
biochemical
model
AU-5800
(Beckman
Coulter,
USA)
IRON
photometric
colorimetric
method
CRP-latex
immunoturbidimetric
method.
Results.
studies
revealed
decrease
upper
limit
cells
(RBC)
indices
(RBC,
HGB,
HCT,
MCV,
MCH,
MCHC,
RDW-CV)
compared
Russian
National
Standard
(2009),
which
amounted
4
%
number
cells,
5
hemoglobin,
2
hematocrit,
3.8
MCV
3.5
as
well
4.2
MCHC;
relation
(2009)
men
3.9
%,
4,
6
—
1.9
MCH
MCHC
5.8
%.
No
significant
differences
found
values
parameters,
between
hematology
analyzers
BC-6800
Sysmex
XE
series
(p
>0.05).
Conclusions.
A
some
hemogram
comparison
are
generally
accepted
statistically
acceptable
deviations,
was
found.
automated
did
not
significantly
affect
or
parameters.
Язык: Английский
Extracting Data from Medical Records for Monitoring Diseases and Generating Medical Alerts
Romanian Journal of Military Medicine,
Год журнала:
2024,
Номер
127(6), С. 448 - 454
Опубликована: Июнь 20, 2024
Background:
Automated
data
processing
is
creating
and
implementing
technology
that
automatically
processes
data.
This
computer
tool
recommended
for
doctors
because
it
supports
their
everyday
work,
assists
in
medical
diagnosis,
enhances
patient
care.
The
aim
of
this
paper
to
propose
an
informatic
can
extract
the
values
some
parameters
interest
from
blood
test
sheets
order
get
alerts
monitor
chronic
disease.
Methods:
An
application,
written
Python,
was
developed
Results:
extracted
glucose,
triglycerides,
HDL-cholesterol,
total
cholesterol,
LDL-cholesterol
(text-based
file
or
graphic
file,
respectively),
saved
them
a
database,
accessed
represented
form
most
recent
these
parameters;
according
metabolic
syndrome
criteria
Framingham
risk
score
were
generated.
Conclusions:
contributes
management
process,
saving
precious
time
helping
doctor
detecting
current
future
health
problems.
Язык: Английский
Predicción Temprana del Dengue mediante Inteligencia Artificial: Un Enfoque basado en Análisis de Química Sanguínea Histórica
Estudios y Perspectivas Revista Científica y Académica,
Год журнала:
2024,
Номер
4(3), С. 2923 - 2936
Опубликована: Ноя. 25, 2024
El
presente
estudio
se
centra
en
el
desarrollo
de
un
sistema
diagnóstico
temprano
del
dengue
mediante
técnicas
machine
learning.
Para
ello,
utiliza
datos
históricos
recolectados
Centro
Salud
la
ciudad
Tena.
Esta
investigación
busca
responder
a
necesidad
contar
con
métodos
diagnósticos
más
rápidos,
accesibles
y
menos
invasivos
para
dengue,
especialmente
regiones
endémicas
como
nuestra.
Se
siguió
una
metodología
basada
Ciencia
Diseño
enfoque
particular
reducción
dimensionalidad
los
datos.
Además,
implementaron
ensamble
Bagging
Boosting
mejorar
robustez
precisión
modelos.
Los
resultados
preliminares
son
promisorios.
La
combinación
algoritmos
ensamble,
Boosting,
mostró
rendimiento
superior
detección
alcanzando
valor
0.6928.
espera
que,
medida
que
profundice
esta
línea
investigación,
las
herramientas
desarrolladas
contribuyan
significativamente
gestión
salud
pública
dengue.
Un
preciso
permitirá
implementar
intervenciones
tempranas
efectivas,
reduciendo
así
morbilidad
mortalidad
asociadas
enfermedad.
Smart medical report: efficient detection of common and rare diseases on common blood tests
Frontiers in Digital Health,
Год журнала:
2024,
Номер
6
Опубликована: Дек. 5, 2024
The
integration
of
AI
into
healthcare
is
widely
anticipated
to
revolutionize
medical
diagnostics,
enabling
earlier,
more
accurate
disease
detection
and
personalized
care.
Язык: Английский