Elsevier eBooks, Год журнала: 2024, Номер unknown
Опубликована: Янв. 1, 2024
Язык: Английский
Elsevier eBooks, Год журнала: 2024, Номер unknown
Опубликована: Янв. 1, 2024
Язык: Английский
Antibiotics, Год журнала: 2025, Номер 14(4), С. 353 - 353
Опубликована: Март 31, 2025
Pseudomonas aeruginosa, a Gram-negative, motile bacterium, may cause significant infections in both community and hospital settings, leading to substantial morbidity mortality. This opportunistic pathogen can thrive various environments, making it public health concern worldwide. P. aeruginosa’s genomic pool is highly dynamic diverse, with pan-genome size ranging from 5.5 7.76 Mbp. versatility arises its ability acquire genes through horizontal gene transfer (HGT) via different genetic elements (GEs), such as mobile (MGEs). These MGEs, collectively known the mobilome, facilitate spread of encoding resistance antimicrobials (ARGs), heavy metals (HMRGs), virulence (VGs), metabolic functions (MGs). Of particular are acquired carbapenemase (ACGs) other β-lactamase genes, classes A, B [metallo-β-lactamases (MBLs)], D carbapenemases, which lead increased antimicrobial resistance. review emphasizes importance mobilome understanding aeruginosa.
Язык: Английский
Процитировано
2The Science of The Total Environment, Год журнала: 2024, Номер 953, С. 175971 - 175971
Опубликована: Сен. 3, 2024
Язык: Английский
Процитировано
7Expert Review of Anti-infective Therapy, Год журнала: 2025, Номер unknown
Опубликована: Март 25, 2025
Traditional microbiological diagnostics face challenges in pathogen identification speed and antimicrobial resistance (AMR) evaluation. Artificial intelligence (AI) offers transformative solutions, necessitating a comprehensive review of its applications, advancements, integration clinical microbiology. This examines AI-driven methodologies, including machine learning (ML), deep (DL), convolutional neural networks (CNNs), for enhancing detection, AMR prediction, diagnostic imaging. Applications virology (e.g. COVID-19 RT-PCR optimization), parasitology malaria detection), bacteriology automated colony counting) are analyzed. A literature search was conducted using PubMed, Scopus, Web Science (2018-2024), prioritizing peer-reviewed studies on AI's accuracy, workflow efficiency, validation. AI significantly improves precision operational efficiency but requires robust validation to address data heterogeneity, model interpretability, ethical concerns. Future success hinges interdisciplinary collaboration develop standardized, equitable tools tailored global healthcare settings. Advancing explainable federated frameworks will be critical bridging current implementation gaps maximizing potential combating infectious diseases.
Язык: Английский
Процитировано
0Emerging contaminants, Год журнала: 2025, Номер unknown, С. 100514 - 100514
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Current Infectious Disease Reports, Год журнала: 2024, Номер 27(1)
Опубликована: Дек. 26, 2024
Язык: Английский
Процитировано
1Annals of Animal Science, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 27, 2024
Abstract Antibiotic resistance (ABR) is a major global health threat that puts decades of medical progress at risk. Bacteria develop through various means, including modifying their targets, deactivating drugs, and utilizing efflux pump systems. The main driving forces behind ABR are excessive antibiotic use in healthcare agriculture, environmental contamination, gaps the drug development process. advanced detection technologies, such as next-generation sequencing (NGS), clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics, metagenomics, has greatly improved identification resistant pathogens. consequences on public significant, increased mortality rates, endangerment modern procedures, resulting higher expenses. It been expected could potentially drive up to 24 million individuals into extreme poverty by 2030. Mitigation strategies focus stewardship, regulatory measures, research incentives, raising awareness. Furthermore, future directions involve exploring potential CRISPR-Cas9 (CRISPR-associated protein 9), nanotechnology, big data analytics new solutions. This review explores resistance, mechanisms, recent trends, drivers, technological advancements detection. also evaluates implications for presents mitigating resistance. emphasizes significance needs, stressing necessity sustained collaborative efforts tackle this issue.
Язык: Английский
Процитировано
0Elsevier eBooks, Год журнала: 2024, Номер unknown
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0