Science China Physics Mechanics and Astronomy, Год журнала: 2024, Номер 68(1)
Опубликована: Ноя. 5, 2024
Язык: Английский
Science China Physics Mechanics and Astronomy, Год журнала: 2024, Номер 68(1)
Опубликована: Ноя. 5, 2024
Язык: Английский
Communications in Theoretical Physics, Год журнала: 2024, Номер 77(3), С. 035601 - 035601
Опубликована: Сен. 29, 2024
Abstract Understanding neural dynamics is a central topic in machine learning, non-linear physics, and neuroscience. However, the are non-linear, stochastic particularly non-gradient, i.e., driving force cannot be written as gradient of potential. These features make analytic studies very challenging. The common tool path integral approach or dynamical mean-field theory. Still, drawback that one has to solve integro-differential equations, which computationally expensive no closed-form solutions general. From associated Fokker–Planck equation, steady-state solution generally unknown. Here, we treat searching for fixed points an optimization problem, construct approximate potential related speed dynamics, find ground state this equivalent running Langevin dynamics. Only zero temperature limit, can distribution original achieved. resultant stationary exactly follows canonical Boltzmann measure. Within framework, quenched disorder intrinsic networks averaged out by applying replica method, leads naturally order parameters non-equilibrium steady states. Our theory reproduces well-known result edge-of-chaos. Furthermore, characterizing continuous transition derived, explained fluctuations responses method thus opens door analytically studying fixed-point landscape deterministic high dimensional
Язык: Английский
Процитировано
1Science China Physics Mechanics and Astronomy, Год журнала: 2024, Номер 68(1)
Опубликована: Ноя. 5, 2024
Язык: Английский
Процитировано
0