Artificial Intelligence based Ensemble Learning Approach for Brain Tumour Classification Using MRI Images DOI
Parita Oza, Ihtiram Raza Khan,

Naga Sathya Lakshman Kumar Kanulla

и другие.

Опубликована: Сен. 18, 2024

Язык: Английский

Brain tumor segmentation based on deep learning, attention mechanisms, and energy-based uncertainty predictions DOI Creative Commons
Zachary Schwehr, Sriman Achanta

Multimedia Tools and Applications, Год журнала: 2025, Номер unknown

Опубликована: Янв. 20, 2025

Язык: Английский

Процитировано

1

Enhancing brain tumor detection in MRI with a rotation invariant Vision Transformer DOI Creative Commons
Palani Thanaraj Krishnan,

K. Pradeep,

Mukund Khandelwal

и другие.

Frontiers in Neuroinformatics, Год журнала: 2024, Номер 18

Опубликована: Июнь 18, 2024

Background The Rotation Invariant Vision Transformer (RViT) is a novel deep learning model tailored for brain tumor classification using MRI scans. Methods RViT incorporates rotated patch embeddings to enhance the accuracy of identification. Results Evaluation on Brain Tumor Dataset from Kaggle demonstrates RViT's superior performance with sensitivity (1.0), specificity (0.975), F1-score (0.984), Matthew's Correlation Coefficient (MCC) (0.972), and an overall 0.986. Conclusion outperforms standard several existing techniques, highlighting its efficacy in medical imaging. study confirms that integrating rotational improves model's capability handle diverse orientations, common challenge specialized architecture invariance approach have potential current methodologies detection extend other complex imaging tasks.

Язык: Английский

Процитировано

6

Deep Learning Model for Resolution Enhancement of Biomedical Images for Biometrics DOI

Bhallamudi RaviKrishna,

M V Bramhananda Reddy,

Mukesh Soni

и другие.

Опубликована: Янв. 3, 2025

In the fields of precision biometrics and healthcare, high-resolution biometric images play a crucial role as objective proof for accurate illness diagnosis. However, due to limitations in hardware resolution scanning duration, real-time acquisition biomedical poses challenges. Classic image super-resolution reconstruction (SRR) algorithms suffer from difficulties estimating model parameters, resulting blurry unrealistic reconstructed images, making them unsuitable images. To address this issue, chapter proposes sparse-coding nonlocal attention dual-network. By employing mechanisms, Gaussian constraints, parameter sharing strategies up-sampling down-sampling dual branches, SRR is achieved. It has high signal-to-noise ratio 30.84 dB structural identity 0.914 rebuilt The research shows that suggested method not only correctly reconstructs details at frequency but it also improves modeling efficiency with lightweight mechanisms. This makes useful reconstructing very resolutions biometrics.

Язык: Английский

Процитировано

0

Generative Intelligence‐Based Federated Learning Model for Brain Tumor Classification in Smart Health DOI
Niladri Maiti, Riddhi Chawla,

Aadam Quraishi

и другие.

Опубликована: Янв. 3, 2025

This study presents a sophisticated ResNet-10 convolutional neural network model that is specifically developed to address the classification difficulties of brain computed tomography (CT) images, particularly those associated with Alzheimer's disease (AD), lesions (including tumors), and normal aging in smart healthcare. The employs residual hybrid attention module (RHAM) enhance specificity features, enabling it effectively collect both spatial information relevant content within tissue. These enhancements model's efficacy traditional categorization tumor diagnosis through utilization associative learning interpretable generative artificial intelligence (GAI). To streamline intricacy design, global media collecting layer implemented, dropout mechanism incorporated subsequent levels prevent unnecessary installation. Throughout training, this makes use label smoothing entropy loss functions its capacity for generalization, even limited quantity training samples. advanced has been extensively tested proven effective on CT scans, obtaining an incredible 97.47% accuracy. demonstration emphasized potential application broader domains such as GAI-based collaborative detection.

Язык: Английский

Процитировано

0

Brain tumor image segmentation based on shuffle transformer-dynamic convolution and inception dilated convolution DOI
Lifang Zhou, Ya Wang

Computer Vision and Image Understanding, Год журнала: 2025, Номер unknown, С. 104324 - 104324

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Mind Unveiled: Cutting-Edge Neuroscience and Precision Brain Mapping DOI Creative Commons
Ajit Pal Singh, Rahul Saxena, Suyash Saxena

и другие.

Asian Journal of Current Research, Год журнала: 2024, Номер 9(3), С. 181 - 195

Опубликована: Авг. 10, 2024

Neuroscience, a dynamic field at the forefront of scientific exploration, is unravelling complexities human brain. By merging biology, psychology, physics, and computer science, researchers are gaining profound insights into cognition, behaviour, neurological underpinnings diseases. Brain mapping key component recent advancements. Techniques like fMRI, PET, DTI offer unprecedented views brain structure function. The Human Connectome Project similar initiatives have produced detailed maps connections, revealing how different regions interact to support cognition behaviour. These crucial for identifying disease biomarkers, predicting treatment responses, developing targeted therapies. Molecular biology genetics also driving progress. Researchers uncovering genetic basis disorders, providing clues about susceptibility progression. imaging techniques visualise neurotransmitter systems cellular processes, shedding light on mechanisms. integration neuroscience with modelling AI revolutionising research. algorithms analyse vast datasets, simulate neural networks, even decode signals brain-machine interfaces. This has potential personalised medicine ground-breaking treatments. future holds immense promise. optogenetics single-cell will greater precision in studying circuits. However, we must address ethical considerations around data privacy, cognitive enhancement, brain-altering interventions. Neuroscience not just understanding brain; it's improving lives. striving conquer disorders maximize by pushing boundaries knowledge technology while upholding principles.

Язык: Английский

Процитировано

3

Ultrasound-Guided Deep Learning for Regional Nerve Block Anesthesia in Scapular Fracture DOI
Upasna Joshi, Mohan Raparthi,

Ramswaroop Reddy

и другие.

Опубликована: Апрель 26, 2024

This study introduces a novel approach to regional nerve block anesthesia in scapular fractures by integrating ultrasound guidance with deep learning techniques. The proposed method leverages advanced imaging modalities and state-of-the-art models achieve precise localization amidst complex fracture patterns. Through extensive experimentation evaluation, we demonstrate the effectiveness of enhancing surgical planning, intraoperative decision-making, patient safety. represents significant advancement field orthopedic surgery, offering promising solution for improving outcomes quality life patients fractures. this suggests locating nerves shoulder advances orthopaedic surgery. We can improve, expedite, streamline procedures use AI medical imaging. will improve

Язык: Английский

Процитировано

0

Optimized Fuzzy Logic Adaptive System with Holographic Convolutional Heterogeneous Graph Neural Network-based Feature Extraction and Classification for Brain Tumor Detection DOI

M. Regan,

P. Santhosh Srinivasan

Опубликована: Окт. 3, 2024

Язык: Английский

Процитировано

0

Integração de redes neurais e inteligência artificial no diagnóstico de tumores cerebrais: convergência entre tecnologia e saúde DOI Creative Commons

Almir Rodrigues Tavares,

Thiago de Souza Franco,

Cleber Silva de Oliveira

и другие.

Cuadernos de Educación y Desarrollo, Год журнала: 2024, Номер 16(13), С. e7065 - e7065

Опубликована: Дек. 23, 2024

Introdução: A segmentação de tumores cerebrais, como meningiomas e gliomas, em imagens ressonância magnética (RM) é essencial para diagnóstico, planejamento cirúrgico terapias, mas enfrenta desafios complexos. Meningiomas, os cerebrais primários mais comuns, requerem delineamento preciso devido à sua morfologia variada, localização anatômica. Objetivo: Compreender o pré-processamento automatizado das tumorais, contribuindo mitigar erros segmentação, desta forma, as técnicas avançadas redes neurais convolucionais (CNNs) métodos tradicionais terão coesão na precisão da clínica diagnóstica. Resultado: O desafio Brain Tumor Segmentation (BraTS), iniciado 2012, desempenhou papel crucial ao fornecer bases dados multimodais promover desenvolvimento algoritmos segmentação. iniciativa expandiu seu foco incluir meningiomas. Com envolvimento equipes internacionais, resultados destacaram promissores podendo influenciar diretamente manejo clínico, planejamentos radioterapia decisões cirúrgicas. relevância segmentações precisas não apenas melhorar técnicos, também impactar positivamente tratamento do paciente. Conclusão: avanço análise médicas com IA só eleva a diagnóstica contribui padrões cuidado eficientes personalizados. Este campo continua evoluindo, estabelecendo novos referenciais automatizada cerebrais.

Процитировано

0

Artificial Intelligence aware Knowledge Graphs and Deep Learning-Based Diagnostic Prediction Model in Healthcare DOI

R. Babu,

Ismail Keshta, Mukesh Soni

и другие.

Опубликована: Сен. 18, 2024

Язык: Английский

Процитировано

0