Numerical simulation of chaotic dynamics in a fractional-order vibration model with Grünwald-Letnikov fractional derivative DOI Open Access
Jiaxin Zhang, Wei Zhang, Xiaoyu Li

и другие.

Networks and Heterogeneous Media, Год журнала: 2025, Номер 20(2), С. 625 - 647

Опубликована: Янв. 1, 2025

Язык: Английский

Parametric Modeling of Glottal Flow in Form of Piecewise Differential Equations DOI

Tahir Mushtaq,

Shahzad Murtaza, Muhammad Saleem

и другие.

Journal of Shanghai Jiaotong University (Science), Год журнала: 2025, Номер unknown

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

0

Application of computer vision based nonlinear physical system dynamic behavior analysis in education DOI Creative Commons

Qiuen Xie,

Min He, Lu Zhang

и другие.

Frontiers in Physics, Год журнала: 2025, Номер 13

Опубликована: Март 19, 2025

Introduction The dynamic behavior analysis of nonlinear physical systems plays a critical role in understanding complex processes across various domains, including education, where interactive simulations such can enhance conceptual learning. Traditional modeling techniques for often fail to capture their high-dimensional, multi-scale, and chaotic nature due oversimplified assumptions or reliance on linear approximations. Methods In this study, we present novel framework leveraging computer vision advanced neural architectures analyze the behaviors systems. proposed Physics-Informed Nonlinear Dynamics Network (PNDN) integrates data-driven embeddings with physics-based constraints, offering robust solution capturing intricate dynamics ensuring adherence principles. Results Experimental results highlight model’s superior performance reconstructing predicting system under diverse conditions, establishing its utility real-time educational simulations. Discussion This approach bridges gap between computational innovation, providing learners tools explore phenomena.

Язык: Английский

Процитировано

0

Nonlinear Dynamic Characteristics of Single-Point Suspension Isolation System of Maglev Vehicle Based on Fractional-Order Nonlinear Nishimura Model DOI Creative Commons
Minghe Qu, Lianchun Wang, Shijie Gu

и другие.

Fractal and Fractional, Год журнала: 2025, Номер 9(5), С. 294 - 294

Опубликована: Май 1, 2025

Base excitation sources significantly impact vehicle-body vibrations in maglev systems, with the dynamic performance of suspension system playing a crucial role mitigating these effects. The second-series vehicle typically employs an air spring, which has great on stability operation. Considering that certain characteristics under foundation excitation, present study proposes fractional-order nonlinear Nishimura model to describe memory-restoring force spring. derivative term is made equivalent form trigonometric function, steady-state response solved by harmonic balance method, and results are compared variety other methods. influence source behavior vibration isolation discussed significantly. variation law jump phenomenon diversity periodic motion multi-value amplitude curve summarized. numerical simulation also revealed presence multi-periodic when variations occurred gap system. Combined cell mapping algorithm, distribution different attractors attraction domain discussed, rule transition fundamental amplitudes summarized Lyapunov exponent.

Язык: Английский

Процитировано

0

Numerical simulation of chaotic dynamics in a fractional-order vibration model with Grünwald-Letnikov fractional derivative DOI Open Access
Jiaxin Zhang, Wei Zhang, Xiaoyu Li

и другие.

Networks and Heterogeneous Media, Год журнала: 2025, Номер 20(2), С. 625 - 647

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0