Smart Agricultural Technology, Год журнала: 2024, Номер 10, С. 100738 - 100738
Опубликована: Дек. 30, 2024
Язык: Английский
Smart Agricultural Technology, Год журнала: 2024, Номер 10, С. 100738 - 100738
Опубликована: Дек. 30, 2024
Язык: Английский
The Scientific Journal of University of Benghazi, Год журнала: 2024, Номер 37(2), С. 101 - 114
Опубликована: Дек. 26, 2024
Efficient quality control in the agriculture sector, particularly regarding inspection of vegetables and fruits, stands as a critical necessity today's health-focused industry. Conventional fruit grading methods, ill-suited for large-scale production, demand an automated, non-invasive, economically feasible substitute. Computer vision emerges promising avenue, leveraging image analysis machine learning algorithms to evaluate produce. The convergence computer processing technologies contemporary has brought about substantial transformation assessment methodologies. This paper conducts in-depth exploration amalgamation techniques evaluation agricultural produce quality. Through comprehensive review, this scientific investigates integration assessment. It scrutinizes key studies, their practical implementations, outcomes, research voids they reveal. Technological progressions within domain have potential amplify productivity curtail circulation flawed or substandard products. Moreover, study deliberates on forthcoming trends technology applications, accentuating prospective influence fruits
Язык: Английский
Процитировано
0Smart Agricultural Technology, Год журнала: 2024, Номер 10, С. 100738 - 100738
Опубликована: Дек. 30, 2024
Язык: Английский
Процитировано
0