Information Fusion, Год журнала: 2025, Номер unknown, С. 103354 - 103354
Опубликована: Июнь 1, 2025
Язык: Английский
Information Fusion, Год журнала: 2025, Номер unknown, С. 103354 - 103354
Опубликована: Июнь 1, 2025
Язык: Английский
Electronics, Год журнала: 2025, Номер 14(4), С. 733 - 733
Опубликована: Фев. 13, 2025
Traditional Chinese medicine (TCM) gathers patient information through inspection, olfaction, inquiry, and palpation, analyzing interpreting the data to make a diagnosis offer appropriate treatment. Traditionally, interpretation of this relies heavily on physician’s personal knowledge experience. However, diagnostic outcomes can vary depending clinical experience subjective judgment. This study employs AI methods focus localized tongue assessment, developing an automatic body segmentation using deep learning network “U-Net” series optimization processes applied surface images. Furthermore, “ResNet34” is utilized for identification “cold”, “neutral”, “hot” constitutions, creating system that enhances consistency reliability results related tongue. The final demonstrate accuracy reaches level junior TCM practitioners (those who have passed practitioner assessment with ≤5 years experience). framework findings serve as (1) foundational step future integration pulse electronic medical records, (2) tool personalized preventive medicine, (3) training resource students diagnose constitutions such “hot.”
Язык: Английский
Процитировано
0Опубликована: Март 18, 2025
Язык: Английский
Процитировано
0Information Fusion, Год журнала: 2025, Номер unknown, С. 103354 - 103354
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0