
Korean Journal of Environmental Health Sciences, Год журнала: 2024, Номер 50(5), С. 311 - 321
Опубликована: Окт. 30, 2024
Язык: Английский
Korean Journal of Environmental Health Sciences, Год журнала: 2024, Номер 50(5), С. 311 - 321
Опубликована: Окт. 30, 2024
Язык: Английский
Indoor Air, Год журнала: 2025, Номер 2025(1)
Опубликована: Янв. 1, 2025
Previous studies have consistently shown a significant correlation between air pollution, particularly PM 2.5 , and various diseases, as well increased mortality rates. This study introduces novel approach for predicting time‐specific indoor exposure by incorporating individual movement routes activity spaces using GPS tracking data time–activity diary. The models were trained separately each hour of the day (e.g., 0:00–0:59, 1:00–1:59) with total 24 models. Their applicability was demonstrated gathered from actual participants. Additionally, automated machine learning ( AutoML ) utilized to optimize prediction performance. results revealed that proposed model effectively accounted influence outdoor concentrations meteorological factors. performance varied across different environments, subway station showing highest accuracy. Future research should address these uncertainties, adopt more advanced modeling techniques, consider diverse variables comprehensive understanding. insights this could significantly enhance health risk assessments associated fine particulate matter exposure.
Язык: Английский
Процитировано
1Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112407 - 112407
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Korean Journal of Environmental Health Sciences, Год журнала: 2024, Номер 50(5), С. 311 - 321
Опубликована: Окт. 30, 2024
Язык: Английский
Процитировано
0