Scientia machina: a proposed conceptual framework for a technology-accelerated system of biomedical science DOI Creative Commons

Sean T. Manion

Frontiers in Systems Biology, Год журнала: 2025, Номер 5

Опубликована: Март 13, 2025

Язык: Английский

PEDI: Towards Efficient Pathway Enrichment and Data Integration in Bioinformatics for Healthcare Using Deep Learning Optimisation DOI Creative Commons

Hariprasath Manoharan,

Shitharth Selvarajan

Biomedical Engineering and Computational Biology, Год журнала: 2025, Номер 16

Опубликована: Фев. 1, 2025

This work presents an enhanced identification procedure utilising bioinformatics data, employing optimisation techniques to tackle crucial difficulties in healthcare operations. A system model is designed essential by analysing major contributions, including risk factors, data integration and interpretation, error rates wastage gain. Furthermore, all aspects are integrated with deep learning optimisation, encompassing normalisation hybrid methodologies efficiently manage large-scale resulting personalised solutions. The implementation of the suggested technology real time addresses significant disparity between data-driven applications, hence facilitating seamless genetic insights. contributions illustrated time, results presented through simulation experiments 4 scenarios 2 case studies. Consequently, comparison research reveals that efficacy for enhancing routes stands at 7%, while complexity diminish 1%, thereby indicating operations can be transformed computational biology.

Язык: Английский

Процитировано

0

Scientia machina: a proposed conceptual framework for a technology-accelerated system of biomedical science DOI Creative Commons

Sean T. Manion

Frontiers in Systems Biology, Год журнала: 2025, Номер 5

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0