Identifying crystal structures beyond known prototypes from x-ray powder diffraction spectra DOI Creative Commons
Abhijith S. Parackal, Rhys E. A. Goodall, Felix A. Faber

и другие.

Physical Review Materials, Год журнала: 2024, Номер 8(10)

Опубликована: Окт. 2, 2024

The large amount of powder diffraction data for which the corresponding crystal structures have not yet been identified suggests existence numerous undiscovered, physically relevant structure prototypes. In this paper, we present a scheme to resolve into with precise atomic coordinates by screening space all possible arrangements, i.e., structural prototypes, including those previously observed, using pre-trained machine learning (ML) model. This involves (i) enumerating symmetry-confined ways in given composition can be accommodated group, (ii) ranking element-assigned prototype representations energies predicted Wyckoff representation regression ML model [Goodall , ], (iii) assigning and perturbing atoms along degree freedom allowed positions match experimental data, (iv) validating thermodynamic stability material density-functional theory. An advantage presented method is that it does rely on database observed prototypes is, therefore capable finding entirely new symmetric arrangements atoms. We demonstrate workflow unidentified x-ray spectra from ICDD identify number stable structures, where majority turns out derivable known However, at least two are found part our prior sets. Published American Physical Society 2024

Язык: Английский

A review of chalcogenide-based perovskites as the next novel materials: Solar cell and optoelectronic applications, catalysis and future perspectives DOI
George G. Njema, Joshua K. Kibet

Next Nanotechnology, Год журнала: 2024, Номер 7, С. 100102 - 100102

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

25

A review on the recovery of cellulose, lignin, and hemicellulose biopolymers from the same source of lignocellulosic biomass – Methodology, characterization and applications DOI

Alusani Manyatshe,

Linda Lunga Sibali

Journal of Water Process Engineering, Год журнала: 2025, Номер 70, С. 107037 - 107037

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

5

Plant-Based Synthesis, characterization Approaches, Applications and Toxicity of Silver Nanoparticles: A Comprehensive Review DOI

Shijith Thomas,

Richard Gonsalves,

Jomy Jose

и другие.

Journal of Biotechnology, Год журнала: 2024, Номер 394, С. 135 - 149

Опубликована: Авг. 17, 2024

Язык: Английский

Процитировано

17

Optimization of ultrasound-assisted extraction of faba bean protein isolate: Structural, functional, and thermal properties. Part 2/2 DOI Creative Commons
Abraham Badjona, Robert Bradshaw, Caroline Millman

и другие.

Ultrasonics Sonochemistry, Год журнала: 2024, Номер 110, С. 107030 - 107030

Опубликована: Авг. 15, 2024

Environmental concerns linked to animal-based protein production have intensified interest in sustainable alternatives, with a focus on underutilized plant proteins. Faba beans, primarily used for animal feed, offer high-quality source promising bioactive compounds food applications. This study explores the efficacy of ultrasound-assisted extraction under optimal conditions (123 W power, 1:15 g/mL solute/solvent ratio, 41 min sonication, 623 mL total volume) isolate faba bean (U-FBPI). The method achieved yield 19.75 % and content 92.87 %, outperforming control method's 16.41 89.88 %. Electrophoretic analysis confirmed no significant changes primary structure U-FBPI compared control. However, Fourier-transform infrared spectroscopy revealed modifications secondary due ultrasound treatment. demonstrated superior water oil holding capacities isolate, although its foaming capacity was reduced by ultrasound. Thermal indicated minimal impact protein's thermal properties applied conditions. research highlights potential improving functional isolates, presenting viable approach advancing plant-based contributing consumption.

Язык: Английский

Процитировано

13

Crystal Structure Assignment for Unknown Compounds from X-ray Diffraction Patterns with Deep Learning DOI
Litao Chen, Bingxu Wang, Wentao Zhang

и другие.

Journal of the American Chemical Society, Год журнала: 2024, Номер 146(12), С. 8098 - 8109

Опубликована: Март 13, 2024

Determining the structures of previously unseen compounds from experimental characterizations is a crucial part materials science. It requires step searching for structure type that conforms to lattice unknown compound, which enables pattern matching process characterization data, such as X-ray diffraction (XRD) patterns. However, this procedure typically places high demand on domain expertise, thus creating an obstacle computer-driven automation. Here, we address challenge by leveraging deep-learning model composed union convolutional residual neural networks. The accuracy demonstrated dataset over 60,000 different 100 types, and additional categories can be integrated without need retrain existing We also unravel operation black box highlight way in resemblance between compound quantified based both local global characteristics XRD This computational tool opens new avenues automating analysis unearthed high-throughput experimentation.

Язык: Английский

Процитировано

9

Fabrication of chitosan-coated calcium tungstate (CaWO4/Chitosan) and its Antioxidant, antimicrobial and phocatalytic activity DOI
T. Gomathi,

V. Priyadharshini,

Mohammed Mujahid Alam

и другие.

Inorganic Chemistry Communications, Год журнала: 2024, Номер 163, С. 112300 - 112300

Опубликована: Март 13, 2024

Язык: Английский

Процитировано

9

A mini review on the applications of artificial intelligence (AI) in surface chemistry and catalysis DOI

Faisal Al-Akayleh,

Ahmed S.A. Ali Agha,

Rami A. Abdel Rahem

и другие.

Tenside Surfactants Detergents, Год журнала: 2024, Номер 61(4), С. 285 - 296

Опубликована: Апрель 29, 2024

Abstract This review critically analyzes the incorporation of artificial intelligence (AI) in surface chemistry and catalysis to emphasize revolutionary impact AI techniques this field. The current examines various studies that using techniques, including machine learning (ML), deep (DL), neural networks (NNs), catalysis. It reviews literature on application models predicting adsorption behaviours, analyzing spectroscopic data, improving catalyst screening processes. combines both theoretical empirical provide a comprehensive synthesis findings. demonstrates applications have made remarkable progress properties nanostructured catalysts, discovering new materials for energy conversion, developing efficient bimetallic catalysts CO 2 reduction. AI-based analyses, particularly advanced NNs, provided significant insights into mechanisms dynamics catalytic reactions. will be shown plays crucial role by significantly accelerating discovery enhancing process optimization, resulting enhanced efficiency selectivity. mini-review highlights challenges data quality, model interpretability, scalability, ethical, environmental concerns AI-driven research. importance continued methodological advancements responsible implementation

Язык: Английский

Процитировано

9

Adsorption of Methylene Blue onto Raw Wastes of Argan, Date, and Olive: Study of Kinetics and Isotherms DOI

Fatima-Ezzahra Raif,

Aicha Akouz, Aziz Hasib

и другие.

Environmental Engineering Science, Год журнала: 2025, Номер unknown

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

1

Mechanistic Insights and Technical Challenges in Sulfur-Based Batteries: A Comprehensive In Situ/Operando Monitoring Toolbox DOI Creative Commons
Jing Yu,

Ivan Pinto‐Huguet,

Chaoyue Zhang

и другие.

ACS Energy Letters, Год журнала: 2024, Номер 9(12), С. 6178 - 6214

Опубликована: Дек. 4, 2024

Batteries based on sulfur cathodes offer a promising energy storage solution due to their potential for high performance, cost-effectiveness, and sustainability. However, commercial viability is challenged by issues such as polysulfide migration, volume changes, uneven phase nucleation, limited ion transport, sluggish redox kinetics. Addressing these challenges requires insights into the structural, morphological, chemical evolution of phases, associated changes internal stresses, diffusion within battery. Such can only be obtained through real-time reaction monitoring battery's operational environment, supported molecular dynamics simulations advanced artificial intelligence-driven data analysis. This review provides an overview

Язык: Английский

Процитировано

5

Synthesis, crystal structure, DFT studies, molecular docking, of 2-amino-6-methoxy-4-(4-nitrophenyl)-4H-benzo[h]chromene-3-carbonitrile as tyrosinase inhibitor DOI
Al-Anood M. Al-Dies,

Ashraf Hassan Fekry Abd El‐Wahab,

Abdullah Alamri

и другие.

Journal of Molecular Structure, Год журнала: 2024, Номер unknown, С. 140289 - 140289

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

4