Augmented Data-Driven Approach towards 3D Printed Concrete Mix Prediction DOI Creative Commons
Saif Rehman, Raja Dilawar Riaz, Muhammad Usman

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(16), С. 7231 - 7231

Опубликована: Авг. 16, 2024

Formulating a mix design for 3D concrete printing (3DCP) is challenging, as it involves an iterative approach, wasting lot of resources, time, and effort to optimize the strength printability. A potential solution formulation through artificial intelligence (AI); however, being new emerging field, open-source availability datasets limited. Limited significantly restrict predictive performance machine learning (ML) models. This research explores data augmentation techniques like deep generative adversarial network (DGAN) bootstrap resampling (BR) increase available train three ML models, namely support vector (SVM), neural (ANN), extreme gradient boosting regression (XGBoost). Their was evaluated using R2, MSE, RMSE, MAE metrics. Models trained on BR-augmented showed higher accuracy than those DGAN-augmented data. The BR-trained XGBoost exhibited highest R2 scores 0.982, 0.970, 0.972, 0.971, 0.980 cast compressive strength, printed direction 1, 2, 3, slump flow respectively. proposed method predicting (mm), cast, anisotropic (MPa) can effectively predict printable concrete, unlocking its full application in construction industry.

Язык: Английский

Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications DOI Open Access

Răzvan Onciul,

Cătălina-Ioana Tătaru,

Adrian Dumitru

и другие.

Journal of Clinical Medicine, Год журнала: 2025, Номер 14(2), С. 550 - 550

Опубликована: Янв. 16, 2025

The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding the brain, unlocking new possibilities in research, diagnosis, therapy. This review explores how AI’s cutting-edge algorithms—ranging from deep learning to neuromorphic computing—are revolutionizing by enabling analysis complex neural datasets, neuroimaging electrophysiology genomic profiling. These advancements are transforming early detection neurological disorders, enhancing brain–computer interfaces, driving personalized medicine, paving way for more precise adaptive treatments. Beyond applications, itself has inspired AI innovations, with architectures brain-like processes shaping advances algorithms explainable models. bidirectional exchange fueled breakthroughs such as dynamic connectivity mapping, real-time decoding, closed-loop systems that adaptively respond states. However, challenges persist, including issues data integration, ethical considerations, “black-box” nature many systems, underscoring need transparent, equitable, interdisciplinary approaches. By synthesizing latest identifying future opportunities, this charts a path forward integration neuroscience. From harnessing multimodal cognitive augmentation, fusion these fields not just brain science, it reimagining human potential. partnership promises where mysteries unlocked, offering unprecedented healthcare, technology, beyond.

Язык: Английский

Процитировано

8

Transfer learning framework for modelling the compressive strength of ultra-high performance geopolymer concrete DOI

Ho Anh Thu Nguyen,

Duy Hoang Pham, Anh Tuấn Lê

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 459, С. 139746 - 139746

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Scour depth prediction around bridge piers of various geometries using advanced machine learning and data augmentation techniques DOI

El Mehdi El Gana,

Abdessalam Ouallali,

Abdeslam Taleb

и другие.

Transportation Geotechnics, Год журнала: 2025, Номер unknown, С. 101537 - 101537

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

2

Machine Learning as an Innovative Engineering Tool for Controlling Concrete Performance: A Comprehensive Review DOI

Fatemeh Mobasheri,

Masoud Hosseinpoor, Ammar Yahia

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

1

Conditional Generative Adversarial Networks and Deep Learning Data Augmentation: A Multi-Perspective Data-Driven Survey Across Multiple Application Fields and Classification Architectures DOI Creative Commons
Lucas C. Ribas, Wallace Casaca, Ricardo T. Fares

и другие.

AI, Год журнала: 2025, Номер 6(2), С. 32 - 32

Опубликована: Фев. 7, 2025

Effectively training deep learning models relies heavily on large datasets, as insufficient instances can hinder model generalization. A simple yet effective way to address this is by applying modern augmentation methods, they synthesize new data matching the input distribution while preserving semantic content. While these methods produce realistic samples, important issues persist concerning how well generalize across different classification architectures and their overall impact in accuracy improvement. Furthermore, relationship between dataset size accuracy, determination of an optimal level, remains open question field. Aiming challenges, paper, we investigate effectiveness eight methods—StyleGAN3, DCGAN, SAGAN, RandAugment, Random Erasing, AutoAugment, TrivialAugment AugMix—throughout several networks varying depth: ResNet18, ConvNeXt-Nano, DenseNet121 InceptionResNetV2. By comparing performance diverse datasets from leaf textures, medical imaging remote sensing, assess which offer superior generalization capability with no pre-trained weights. Our findings indicate that tool for dealing small achieving gains up 17%.

Язык: Английский

Процитировано

0

Machine Learning and Sustainable Geopolymer Materials: A Systematic Review DOI Creative Commons

Ho Anh Thu Nguyen,

Duy Hoang Pham, Yonghan Ahn

и другие.

Materials Today Sustainability, Год журнала: 2025, Номер 30, С. 101095 - 101095

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

0

Developing a rapid detection method for segmentation of durability-induced cracks using U-Net based deep learning models DOI
Yılmaz Yılmaz, Safa Nayır

Advances in Engineering Software, Год журнала: 2025, Номер 207, С. 103950 - 103950

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

An intelligent hybrid machine learning framework for compressive strength prediction of alkali-activated binders based on fly ash characteristics DOI

Ke-yu Chen,

Zhenming Li, Zhifeng Zhu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110971 - 110971

Опубликована: Май 6, 2025

Язык: Английский

Процитировано

0

PREDICTION OF THE COMPRESSIVE AND TENSILE STRENGTH OF HIGH-PERFORMANCE CONCRETE BASED ON A HYBRID MODEL OF MULTILAYER PERCEPTRON (MLP) AND LIGHTGBM DOI Creative Commons
S. J. Zhao

Ceramics - Silikaty, Год журнала: 2025, Номер unknown, С. 0 - 0

Опубликована: Май 13, 2025

Язык: Английский

Процитировано

0

Concrete water cement ratio prediction system using random forest regression DOI Creative Commons
Kudirat O. Jimoh, M.A. Kareem, Adenike Adegoke-Elijah

и другие.

Опубликована: Май 28, 2025

Язык: Английский

Процитировано

0