Emerging Trends and Applications of Cyber Security and Artificial Intelligence Tools in Detecting Food Frauds DOI

Hafiz Muhammad Rizwan Abid,

Ubaid ur Rahman,

Nauman Khalid

и другие.

Food Reviews International, Год журнала: 2025, Номер unknown, С. 1 - 18

Опубликована: Апрель 18, 2025

Язык: Английский

Portable System for Cocoa Bean Quality Assessment Using Multi-Output Learning and Augmentation DOI
Kamini G. Panchbhai, Madhusudan G. Lanjewar

Food Control, Год журнала: 2025, Номер unknown, С. 111234 - 111234

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Advancing Legume Quality Assessment Through Machine Learning: Current Trends and Future Directions DOI
Mahdi Rashvand, Mehrad Nikzadfar, Sabina Laveglia

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107532 - 107532

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Integrative hyperspectral imaging and artificial intelligence approaches for identifying sucrose substitutes and assessing cookie qualities DOI Creative Commons
Sungmin Jeong,

S.-J. Cho,

Suyong Lee

и другие.

LWT, Год журнала: 2025, Номер unknown, С. 117412 - 117412

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

AI in Food Science: Exploring Core Elements, Challenges, and Future Directions DOI
Rania I.M. Almoselhy, Afreen Usmani

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Recycling-Oriented Characterization of Space Waste Through Clean Hyperspectral Imaging Technology in a Circular Economy Context DOI Creative Commons
Giuseppe Bonifazi, Idiano D’Adamo, Roberta Palmieri

и другие.

Clean Technologies, Год журнала: 2025, Номер 7(1), С. 26 - 26

Опубликована: Март 14, 2025

Waste management is one of the key areas where circular models should be promoted, as it plays a crucial role in minimizing environmental impact and conserving resources. Effective material identification classification are essential for optimizing recycling processes selecting appropriate production equipment. Proper sorting materials enhances both efficiency sustainability systems. The proposed study explores potential using cost-effective strategy based on hyperspectral imaging (HSI) to classify space waste products, an emerging challenge management. Specifically, investigates use HSI sensors operating near-infrared range detect identify classification. Analyses focused textile plastic materials. results show promising further research, suggesting that approach capable effectively identifying classifying various categories predicted images achieve exceptional sensitivity specificity, ranging from 0.989 1.000 0.995 1.000, respectively. Using cost-effective, non-invasive technology could offer significant improvement over traditional methods classification, particularly challenging context operations. implications this work how enables development geared toward sustainable hence proper distinction they allow better recovery end-of-life management, ultimately contributing more efficient recycling, valorization, practices.

Язык: Английский

Процитировано

0

Non-Destructive Detection of Soybean Storage Quality Using Hyperspectral Imaging Technology DOI Creative Commons
Yurong Zhang, Wenliang Wu, Xianqing Zhou

и другие.

Molecules, Год журнала: 2025, Номер 30(6), С. 1357 - 1357

Опубликована: Март 18, 2025

(1) Background: Soybean storage quality is crucial for subsequent processing and consumption, making it essential to explore an objective, rapid, non-destructive technology assessing its quality. (2) Methods: crude fatty acid value important indicator evaluating the of soybeans. In this study, three types soybeans were subjected accelerated aging analyze trends in values. The study focused on acquiring raw spectral information using hyperspectral imaging technology, preprocessing by derivative method (1ST, 2ND), multiplicative scatter correction (MSC), standard normal variate (SNV). feature variables extracted a variable iterative space shrinkage approach (VISSA), competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA). Partial least squares regression (PLSR), support vector machine (SVM), extreme learning (ELM) models developed predict values optimal model was used visualize dynamic distribution these (3) Results: exhibited positive correlation with time, functioning as direct soybean 1ST-VISSA-SVM predictive values, achieving coefficient determination (R2) 0.9888 root mean square error (RMSE) 0.1857 enabling visualization related chemical information. (4) Conclusions: has been confirmed that possesses capability rapid detection

Язык: Английский

Процитировано

0

Insights of Freshness Phenotype Detection for Postharvest Fruit and Vegetables DOI Creative Commons
Qiankun Wang,

Hui He,

Chenxia Liu

и другие.

Plant Phenomics, Год журнала: 2025, Номер unknown, С. 100042 - 100042

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Emerging Trends and Applications of Cyber Security and Artificial Intelligence Tools in Detecting Food Frauds DOI

Hafiz Muhammad Rizwan Abid,

Ubaid ur Rahman,

Nauman Khalid

и другие.

Food Reviews International, Год журнала: 2025, Номер unknown, С. 1 - 18

Опубликована: Апрель 18, 2025

Язык: Английский

Процитировано

0