Trends in Microbiology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Trends in Microbiology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
The Journal of Microbiology, Год журнала: 2025, Номер 63(3), С. e2501005 - e2501005
Опубликована: Март 28, 2025
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Proteins Structure Function and Bioinformatics, Год журнала: 2025, Номер unknown
Опубликована: Апрель 2, 2025
The accurate prediction of enzyme function is crucial for elucidating disease mechanisms and identifying drug targets. Nevertheless, existing commission (EC) number methods are limited by database coverage the depth sequence information mining, hindering efficiency precision annotation. Therefore, this study introduces ProteEC-CLA (Protein EC model with Contrastive Learning Agent Attention). utilizes contrastive learning to construct positive negative sample pairs, which not only enhances feature extraction but also improves utilization unlabeled data. This process helps learn differences in features, thereby enhancing its ability predict function. Integrating pre-trained protein language ESM2, generates informative embeddings deep functional correlation analysis, significantly accuracy. With incorporation Attention mechanism, ProteEC-CLA's comprehensively capture local details global features enhanced, ensuring high-accuracy predictions on complex sequences. results demonstrate that performs exceptionally well two independent representative datasets. In standard dataset, it achieves 98.92% accuracy at EC4 level. more challenging clustered split 93.34% an F1-score 94.72%. sequences as input, can accurately numbers up fourth level, annotation accuracy, makes a highly efficient precise tool enzymology research applications.
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2025, Номер unknown, С. 100039 - 100039
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Journal of Molecular Modeling, Год журнала: 2025, Номер 31(6)
Опубликована: Май 19, 2025
Язык: Английский
Процитировано
0Botanical studies, Год журнала: 2025, Номер 66(1)
Опубликована: Май 22, 2025
Abstract AlphaFold 3 (AF3), an artificial intelligence (AI)-based software for protein complex structure prediction, represents a significant advancement in structural biology. Its flexibility and enhanced scalability have unlocked new applications various fields, specifically plant science, including improving crop resilience predicting the structures of plant-specific proteins involved stress responses, signalling pathways, immune responses. Comparisons with existing tools, such as ClusPro AlphaPulldown, highlight AF3’s unique strengths sequence-based interaction predictions its greater adaptability to biomolecular structures. However, limitations persist, challenges modelling large complexes, dynamics, from underrepresented limited evolutionary data. Additionally, AF3 encounters difficulties mutation effects on interactions DNA binding, which can be improved molecular dynamics experimental validation. This review presents overview advancements, using examples fungal research, comparisons tools. It also discusses current offers perspectives integrating validation enhance capabilities.
Язык: Английский
Процитировано
0Biomolecules, Год журнала: 2024, Номер 14(9), С. 1073 - 1073
Опубликована: Авг. 27, 2024
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range diseases. This review examines recent advances in computational experimental approaches improved therapeutics. Key areas focus include antibody engineering, enzyme replacement therapies, cytokine-based drugs. Computational methods like structure-based design, machine learning integration, language models have dramatically enhanced our ability to predict properties guide efforts. Experimental techniques such as directed evolution rational design continue evolve, with high-throughput accelerating discovery process. Applications these led breakthroughs affinity maturation, bispecific antibodies, stability enhancement, conditionally active cytokines. Emerging intracellular delivery, stimulus-responsive proteins, de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain predicting vivo behavior, scalable manufacturing, immunogenicity mitigation, targeted delivery. Addressing will require continued integration methods, well deeper understanding behavior complex physiological environments. As field advances, we can anticipate increasingly sophisticated effective therapeutics treating human
Язык: Английский
Процитировано
1International Journal of Molecular Sciences, Год журнала: 2024, Номер 25(19), С. 10793 - 10793
Опубликована: Окт. 8, 2024
The 3D protein structure is the basis for all their biological functions [...]
Язык: Английский
Процитировано
0Trends in Microbiology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0