Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 25, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 25, 2024
Язык: Английский
Cluster Computing, Год журнала: 2025, Номер 28(4)
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
1Engineering Reports, Год журнала: 2025, Номер 7(5)
Опубликована: Апрель 30, 2025
ABSTRACT The proposed Random Walk‐based Improved GOOSE (IGOOSE) search algorithm is a novel population‐based meta‐heuristic inspired by the collective movement patterns of geese and stochastic nature random walks. This includes inherent balance between exploration exploitation integrating walk behavior with local strategies. In this paper, IGOOSE has been rigorously tested across 23 benchmark functions where 13 benchmarks are varying dimensions (10, 30, 50, 100 dimensions). These provide diverse range optimization landscapes, enabling comprehensive evaluation performance under different problem complexities. various parameters such as convergence speed, magnitude solution, robustness for dimensions. Further, applied to optimize eight distinct engineering problems, showcasing its versatility effectiveness in real‐world scenarios. results these evaluations highlight competitive tool, offering promising both standard complex structural problems. Its ability effectively, combined deal positions valuable tool.
Язык: Английский
Процитировано
0Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 7, 2025
Язык: Английский
Процитировано
0Journal of Computational and Applied Mathematics, Год журнала: 2024, Номер unknown, С. 116475 - 116475
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 25, 2024
Язык: Английский
Процитировано
0