Machine tool model correction assisted by dynamic evolution sequence DOI Creative Commons
Weihao Lin, Peng Zhong,

Xindi Wei

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Дек. 27, 2024

Abstract In the simulation analysis of large-scale industrial instruments such as machine tools, in order to ensure accuracy, model parameter correction is necessary. This research presents a tool method assisted by dynamic evolution sequence (DES). The first introduces generate uniformly distributed sequence, replacing traditional used Kriging surrogate models, and constructing more accurate for tools. Additionally, incorporating instead random improves search space coverage Heterogeneous Comprehensive Learning Particle Swarm Optimization (HCLPSO) algorithm. results numerical examples demonstrate that finite element model, corrected using proposed method, accurately predicts true displacement responses tool. offers new solution addressing static problems.

Язык: Английский

Hybrid Optimization Based Harmonic Minimization in Three Phase Multilevel Inverter With Reduced Switch Topology DOI
Mehmet Halil Yabalar, Ergun Erçelebi

IEEE Access, Год журнала: 2024, Номер 12, С. 71010 - 71023

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1

Harmonic mitigation in multilevel inverters for power quality improvement in power system DOI

Tanmoy Karmakar,

Sangita Das Biswas,

Somudeep Bhattacharjee

и другие.

AIP conference proceedings, Год журнала: 2024, Номер 3242, С. 050002 - 050002

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Comparison of popular metaheuristic optimization algorithms for the optimal design of DC-DC converters DOI
Barnam Jyoti Saharia, Nabin Sarmah

International Journal of Systems Assurance Engineering and Management, Год журнала: 2024, Номер 16(1), С. 199 - 233

Опубликована: Ноя. 21, 2024

Язык: Английский

Процитировано

0

Machine tool model correction assisted by dynamic evolution sequence DOI Creative Commons
Weihao Lin, Peng Zhong,

Xindi Wei

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Дек. 27, 2024

Abstract In the simulation analysis of large-scale industrial instruments such as machine tools, in order to ensure accuracy, model parameter correction is necessary. This research presents a tool method assisted by dynamic evolution sequence (DES). The first introduces generate uniformly distributed sequence, replacing traditional used Kriging surrogate models, and constructing more accurate for tools. Additionally, incorporating instead random improves search space coverage Heterogeneous Comprehensive Learning Particle Swarm Optimization (HCLPSO) algorithm. results numerical examples demonstrate that finite element model, corrected using proposed method, accurately predicts true displacement responses tool. offers new solution addressing static problems.

Язык: Английский

Процитировано

0