FPGA implementation and verification of efficient and reconfigurable CNN-LSTM accelerator design DOI

Hongmin He,

Danfeng Qiu, Fen Ge

и другие.

Опубликована: Сен. 22, 2023

Verilog language is used to complete the RTL modeling of high efficiency LSTM accelerator and reconfigurable CNN-LSTM on FPGA. Through comparing calculation results hardware software, functional correctness designed confirmed. The experimental show that proposed has 16 times acceleration ratio CPU, 19.12% power consumption GPU, 85.68 GOPS throughput, 22.4 GOPS/W energy efficiency, which superior other designs same type. Compared with can achieve 12 ratio, while only approximately 10.02% GPU; throughput rate reaches 77.5 GOPS, 42.9 GOPS/W. In application background, compared efficient accelerator, on-chip resource reduced decreasing time consumed process a set data by 65%.

Язык: Английский

A comprehensive review of dwarf mongoose optimization algorithm with emerging trends and future research directions DOI Creative Commons

Olanrewaju L. Abraham,

Md Asri Ngadi

Decision Analytics Journal, Год журнала: 2025, Номер unknown, С. 100551 - 100551

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Theoretical investigations on analysis and optimization of freeze drying of pharmaceutical powder using machine learning modeling of temperature distribution DOI Creative Commons
Turki Al Hagbani, Jawaher Abdullah Alamoudi, Majed A. Bajaber

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 6, 2025

This study investigates the application of various neural network-based models for predicting temperature distribution in freeze drying process biopharmaceuticals. For heat-sensitive biopharmaceutical products, is preferred to prevent degradation pharmaceutical compounds. The modeling framework based on CFD (Computational Fluid Dynamics) and machine learning (ML). ML explored include Single-Layer Perceptron (SLP), Multi-Layer (MLP), Fully Connected Neural Network (FCNN), Deep (DNN). Model optimization achieved through Fireworks Algorithm (FWA). Results reveal promising performance across all models, with MLP demonstrating highest accuracy both test training datasets, achieving an R2 score 0.99713 0.99717 respectively. SLP also exhibits strong performance, 0.88903 dataset. FCNN DNN perform admirably, scores 0.99158 0.99639 dataset These results highlight efficiency network-driven specifically MLP, precisely forecasting values spatial coordinates. Additionally, integration model refinement yields advantages improving predictive these models.

Язык: Английский

Процитировано

1

EDA-ML: Graph Representation Learning Framework for Digital IC Design Automation DOI
Pratik Shrestha, Ioannis Savidis

Опубликована: Апрель 3, 2024

Язык: Английский

Процитировано

4

A Comprehensive Framework for Estimating the Remaining Useful Life of Li-ion Batteries under Limited Data Conditions with no Temporal Identifier DOI

Camilo Lopez-Salazar,

Stephen Ekwaro-Osire, Shweta Dabetwar

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 253, С. 110517 - 110517

Опубликована: Окт. 5, 2024

Язык: Английский

Процитировано

3

A Hybrid Physics–Machine Learning Approach for Modeling Plastic–Bed Interactions during Fluidized Bed Pyrolysis DOI Creative Commons
Stefano Iannello,

Andrea Friso,

Federico Galvanin

и другие.

Energy & Fuels, Год журнала: 2025, Номер 39(9), С. 4549 - 4564

Опубликована: Фев. 19, 2025

The axial mixing/segregation behavior of single plastic particles in a bubbling fluidized bed reactor has been investigated by noninvasive X-ray imaging techniques the temperature range 500–650 °C and under pyrolysis conditions. Experimental results showed that extent mixing between particle increases as both fluidization velocity increase. Three modeling approaches were proposed to describe particle, i.e., purely mechanistic model, physics-informed neural network (PINN), an augmented PINN (augPINN). former model is based on second law motion. standard PINN, built simply embedding motion loss function. third approach involves introduction new interphase distribution parameter, P, into model. This parameter represents relative importance effects emulsion bubble phases particle. was obtained training using displacement data. augPINN shown outperform models describing polypropylene particles. Moreover, P found be physically interpretable. main novelty this work show how different frameworks concept machine learning can successfully applied complex real-world hydrodynamic data sets.

Язык: Английский

Процитировано

0

Bionic gear design and multiple performance improvements of splash lubrication inspired by fan palm leaves DOI

Yuxiao Tang,

Qian Xu,

Konghua Yang

и другие.

International Journal of Heat and Mass Transfer, Год журнала: 2025, Номер 242, С. 126879 - 126879

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

0

Predicting Thermal Resistance of Packaging Design by Machine Learning Models DOI Creative Commons
Jung-Pin Lai,

Shane Lin,

Vito Lin

и другие.

Micromachines, Год журнала: 2025, Номер 16(3), С. 350 - 350

Опубликована: Март 19, 2025

Thermal analysis is an indispensable aspect of semiconductor packaging. Excessive operating temperatures in integrated circuit (IC) packages can degrade component performance and even cause failure. Therefore, thermal resistance characteristics are critical to the reliability electronic components. Machine learning modeling offers effective way predict IC packages. In this study, data from finite element (FEA) utilized by machine models during package testing. For two types, namely Quad Flat No-lead (QFN) Thin Fine-pitch Ball Grid Array (TFBGA), derived analysis, employed resistance. The values include θJA, θJB, θJC, ΨJT, ΨJB. Five models, light gradient boosting (LGBM), random forest (RF), XGBoost (XGB), support vector regression (SVR), multilayer perceptron (MLP), applied as forecasting study. Numerical results indicate that model outperforms other terms accuracy for almost all cases. Furthermore, achieved highly satisfactory. conclusion, shows significant promise a reliable tool predicting packaging design. application techniques these parameters could enhance efficiency designs.

Язык: Английский

Процитировано

0

Data augmentation and deep learning model to predict the mechanical properties of AlSi10Mg material fabricated using Laser Powder Bed Fusion additive manufacturing DOI

A. Joy,

Sumaiya Zoha,

Shamim Akhter

и другие.

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112288 - 112288

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

U-shaped deep learning networks for algal bloom detection using Sentinel-2 imagery: Exploring model performance and transferability DOI
İsmail Çölkesen, Mustafacan Saygı, Muhammed Yusuf Öztürk

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 381, С. 125152 - 125152

Опубликована: Апрель 5, 2025

Язык: Английский

Процитировано

0

Development of hybrid computational model for simulation of heat transfer and temperature prediction in chemical reactors DOI Creative Commons

Kamal Y. Thajudeen,

Mohammed Muqtader Ahmed, Saad Ali Alshehri

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 26, 2025

Язык: Английский

Процитировано

0