Measurement, Год журнала: 2025, Номер unknown, С. 117405 - 117405
Опубликована: Март 1, 2025
Язык: Английский
Measurement, Год журнала: 2025, Номер unknown, С. 117405 - 117405
Опубликована: Март 1, 2025
Язык: Английский
Buildings, Год журнала: 2025, Номер 15(4), С. 648 - 648
Опубликована: Фев. 19, 2025
Building energy systems (BESs) are essential for modern infrastructure but face significant challenges in equipment diagnosis, consumption prediction, and operational control. The complexity of BESs, coupled with the increasing integration renewable sources, presents difficulties fault detection, accurate forecasting, dynamic system optimisation. Traditional control strategies struggle low efficiency, slow response times, limited adaptability, making it difficult to ensure reliable operation optimal management. To address these issues, researchers have increasingly turned machine learning (ML) techniques, which offer promising solutions improving scheduling, real-time BESs. This review provides a comprehensive analysis ML techniques applied According results literature review, supervised methods, such as support vector machines random forest, demonstrate high classification accuracy detection require extensive labelled datasets. Unsupervised approaches, including principal component clustering algorithms, robust identification capabilities without data may complex nonlinear patterns. Deep particularly convolutional neural networks long short-term memory models, exhibit superior forecasting Reinforcement further enhances management by dynamically adjusting parameters maximise efficiency cost savings. Despite advancements, remain terms availability, computational costs, model interpretability. Future research should focus on hybrid integrating explainable AI enhancing adaptability evolving demands. also highlights transformative potential BESs outlines future directions sustainable intelligent building
Язык: Английский
Процитировано
3Energy, Год журнала: 2025, Номер unknown, С. 135107 - 135107
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
3Energy, Год журнала: 2024, Номер 309, С. 133042 - 133042
Опубликована: Авг. 31, 2024
Язык: Английский
Процитировано
11Energy Strategy Reviews, Год журнала: 2025, Номер 57, С. 101638 - 101638
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Energy and AI, Год журнала: 2025, Номер unknown, С. 100470 - 100470
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Sustainability, Год журнала: 2025, Номер 17(3), С. 1033 - 1033
Опубликована: Янв. 27, 2025
With the proliferation of distributed energy resources, advanced metering infrastructure, and communication technologies, grid is transforming into a flexible, intelligent, collaborative system. Short-term electric load forecasting for individual residential customers playing an increasingly important role in operation planning future grid. Predicting electrical households more challenging with higher uncertainty volatility at household level compared to total feeder regional levels. The previous research results show that accuracy using machine learning single deep model far from adequate there still room improvement.
Язык: Английский
Процитировано
1Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127329 - 127329
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Polymers, Год журнала: 2024, Номер 16(18), С. 2607 - 2607
Опубликована: Сен. 14, 2024
This review explores the application of Long Short-Term Memory (LSTM) networks, a specialized type recurrent neural network (RNN), in field polymeric sciences. LSTM networks have shown notable effectiveness modeling sequential data and predicting time-series outcomes, which are essential for understanding complex molecular structures dynamic processes polymers. delves into use models polymer properties, monitoring polymerization processes, evaluating degradation mechanical performance Additionally, it addresses challenges related to availability interpretability. Through various case studies comparative analyses, demonstrates different science applications. Future directions also discussed, with an emphasis on real-time applications need interdisciplinary collaboration. The goal this is connect advanced machine learning (ML) techniques science, thereby promoting innovation improving predictive capabilities field.
Язык: Английский
Процитировано
9Water Resources Management, Год журнала: 2024, Номер 38(15), С. 6045 - 6062
Опубликована: Авг. 17, 2024
Язык: Английский
Процитировано
7International Journal of Refrigeration, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1