Опубликована: Дек. 13, 2024
Язык: Английский
Опубликована: Дек. 13, 2024
Язык: Английский
Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 350 - 366
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Operations Research Forum, Год журнала: 2024, Номер 5(2)
Опубликована: Апрель 1, 2024
Язык: Английский
Процитировано
3Journal of Intelligent Manufacturing, Год журнала: 2025, Номер unknown
Опубликована: Янв. 4, 2025
Язык: Английский
Процитировано
0AIP conference proceedings, Год журнала: 2025, Номер 3262, С. 050022 - 050022
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0SpringerBriefs in applied sciences and technology, Год журнала: 2025, Номер unknown, С. 21 - 35
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0SpringerBriefs in applied sciences and technology, Год журнала: 2025, Номер unknown, С. 103 - 126
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Journal of Intelligent Systems, Год журнала: 2025, Номер 34(1)
Опубликована: Янв. 1, 2025
Abstract The concept of cloud computing has completely changed how computational resources are delivered and used. By enabling on-demand access to collective through the internet. While this technological shift offers unparalleled flexibility, it also brings considerable challenges, especially in scheduling resource allocation, particularly when optimizing multiple objectives a dynamic environment. Efficient allocation critical computing, as they directly impact system performance, utilization, cost efficiency heterogeneous conditions. Existing approaches often face difficulties balancing conflicting objectives, such reducing task completion time while staying within budget constraints or minimizing energy consumption maximizing utilization. As result, many solutions fall short optimal leading increased costs degraded performance. This systematic literature review (SLR) focuses on research conducted between 2019 2023 Following preferred reporting items for reviews meta-analyses guidelines, ensures transparent replicable process by employing inclusion criteria bias. explores key concepts management classifies existing strategies into mathematical, heuristic, hyper-heuristic approaches. It evaluates popular algorithms designed optimize metrics consumption, reduction, makespan minimization, performance satisfaction. Through comparative analysis, SLR discusses strengths limitations various schemes identifies emerging trends. underscores steady growth field, emphasizing importance developing efficient address complexities modern systems. findings provide comprehensive overview current methodologies pave way future aimed at tackling unresolved challenges management. work serves valuable practitioners academics seeking environments, contributing advancements computing.
Язык: Английский
Процитировано
0Lecture notes in networks and systems, Год журнала: 2025, Номер unknown, С. 481 - 493
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Internet of Things, Год журнала: 2025, Номер unknown, С. 101654 - 101654
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0International Journal of Production Research, Год журнала: 2024, Номер unknown, С. 1 - 22
Опубликована: Сен. 24, 2024
Язык: Английский
Процитировано
2