
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Янв. 31, 2025
Язык: Английский
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Янв. 31, 2025
Язык: Английский
Energies, Год журнала: 2025, Номер 18(2), С. 407 - 407
Опубликована: Янв. 18, 2025
Advanced deep learning algorithms play a key role in optimizing energy usage smart cities, leveraging massive datasets to increase efficiency and sustainability. These analyze real-time data from sensors IoT devices predict demand, enabling dynamic load balancing reducing waste. Reinforcement models optimize power distribution by historical patterns adapting changes real time. Convolutional neural networks (CNNs) recurrent (RNNs) facilitate detailed analysis of spatial temporal better usage. Generative adversarial (GANs) are used simulate scenarios, supporting strategic planning anomaly detection. Federated ensures privacy-preserving sharing distributed systems, promoting collaboration without compromising security. technologies driving the transformation towards sustainable energy-efficient urban environments, meeting growing demands modern cities. However, there is view that if pace development maintained with large amounts data, computational/energy costs may exceed benefits. The article aims conduct comparative assess potential this group technologies, taking into account efficiency.
Язык: Английский
Процитировано
2Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Янв. 31, 2025
Язык: Английский
Процитировано
0