YOLOv10-UDFishNet: detection of diseased Takifugu rubripes juveniles in turbid underwater environments
Aquaculture International,
Год журнала:
2025,
Номер
33(1)
Опубликована: Янв. 1, 2025
Язык: Английский
FeYOLO: Improved YOLOv7-tiny model using feature enhancement modules for the detection of individual silkworms in high-density and compact conditions
Computers and Electronics in Agriculture,
Год журнала:
2025,
Номер
231, С. 109966 - 109966
Опубликована: Янв. 22, 2025
Язык: Английский
Picking point localization method of table grape picking robot based on you only look once version 8 nano
Engineering Applications of Artificial Intelligence,
Год журнала:
2025,
Номер
146, С. 110266 - 110266
Опубликована: Фев. 15, 2025
Язык: Английский
Real-time detection of hypoxic stress behavior in aquaculture fish using an enhanced YOLOv8 model
Aquaculture International,
Год журнала:
2025,
Номер
33(3)
Опубликована: Фев. 25, 2025
Язык: Английский
Accurate machine vision identification of GCHD symptom using a self-attention-based CNN model with adaptive fish separation
Smart Agricultural Technology,
Год журнала:
2025,
Номер
unknown, С. 100871 - 100871
Опубликована: Фев. 1, 2025
Язык: Английский
FQDNet: A Fusion-Enhanced Quad-Head Network for RGB-Infrared Object Detection
Remote Sensing,
Год журнала:
2025,
Номер
17(6), С. 1095 - 1095
Опубликована: Март 20, 2025
RGB-IR
object
detection
provides
a
promising
solution
for
complex
scenarios,
such
as
remote
sensing
and
low-light
environments,
by
leveraging
the
complementary
strengths
of
visible
infrared
modalities.
Despite
significant
advancements,
two
key
challenges
remain:
(1)
effectively
integrating
multi-modal
features
within
lightweight
frameworks
to
enable
real-time
performance
(2)
fully
utilizing
multi-scale
features,
which
are
crucial
detecting
objects
varying
sizes
but
often
underexploited,
leading
suboptimal
accuracy.
To
address
these
challenges,
we
propose
FQDNet,
novel
network
that
integrates
an
optimized
fusion
strategy
with
Quad-Head
framework.
enhance
feature
fusion,
introduce
Channel
Swap
SCDown
Block
(CSSB)
initial
interaction
Spatial
Attention
Fusion
Module
(SCAFM)
further
refine
integration
features.
improve
utilization,
designed
Dynamic-Weight-based
Detector
(DWQH),
dynamically
assigns
weights
different
scales,
enabling
adaptive
enhancing
representation.
This
mechanism
significantly
improves
performance,
particularly
small
objects.
Furthermore,
ensure
applicability,
incorporate
optimizations,
including
Partial
Cross-Stage
Pyramid
(PCSP)
modules,
reduce
computational
complexity
while
maintaining
high
FQDNet
was
evaluated
on
three
public
datasets—M3FD,
VEDAI,
LLVIP—achieving
mAP@[0.5:0.95]
gains
4.4%,
3.5%,
3.1%
over
baseline,
only
0.4
M
increase
in
parameters
5.5
GFLOPs
overhead.
Compared
state-of-the-art
algorithms,
our
method
strikes
better
balance
between
accuracy
efficiency
exhibiting
strong
robustness
across
diverse
scenarios.
Язык: Английский
TSSSKD-YOLO: an intelligent classification and defect detection method of insulators on transmission lines by fusing knowledge distillation in multiple scenarios
Multimedia Systems,
Год журнала:
2025,
Номер
31(3)
Опубликована: Апрель 7, 2025
Язык: Английский
DF-DETR: Dead fish-detection transformer in recirculating aquaculture system
Aquaculture International,
Год журнала:
2024,
Номер
33(1)
Опубликована: Ноя. 13, 2024
Язык: Английский
BiFormer Attention‐Guided Multiscale Fusion Mask2former Networks for Fish Abnormal Behavior Recognition and Segmentation
Aquaculture Research,
Год журнала:
2024,
Номер
2024(1)
Опубликована: Янв. 1, 2024
To
address
the
issues
of
accurately
identifying
and
tracking
individual
fish
abnormal
behaviors
poor
adaptability
in
aquaculture
field,
this
paper
proposes
a
Mask2former
model
combined
with
bidirectional
routing
attention
mechanism
(BiFormer)
multiscale
dilated
(MSDA)
module
for
behavior
recognition
segmentation.
compensate
lack
publicly
available
datasets
on
behavior,
we
created
“FISH_segmentation_2023”
dataset,
which
includes
four
types
behaviors.
First,
by
introducing
BiFormer
mechanism,
can
better
capture
critical
temporal
spatial
information
image
sequences,
significantly
enhancing
feature
representation.
Second,
after
processing
maps
pixel
decoder,
MSDA
is
introduced
to
perform
fusion
these
features.
The
fused
features
are
then
passed
transformer
further
model’s
ability
recognize
Finally,
improve
performance
class
imbalance
designed
composite
loss
function
combining
focal
dice
(FD
loss).
This
balance
influence
easy
difficult‐to‐classify
samples
while
optimizing
segmentation
performance,
thereby
improving
accuracy
mean
intersection
over
union
(mIoU)
metrics.
Experimental
results
show
that
FD
(BMF)‐Mask2former
exhibits
high
achieving
average
(IoU),
accuracy,
recall
values
92.33%,
95.63%,
94.82%,
respectively,
self‐built
FISH_segmentation_2023
representing
improvements
6.10%,
4.50%,
5.09%,
compared
model.
study
demonstrates
proposed
both
local
contextual
through
methods,
resulting
high‐quality
outcomes.
Язык: Английский