Food Chemistry, Год журнала: 2024, Номер 464, С. 141657 - 141657
Опубликована: Окт. 15, 2024
Язык: Английский
Food Chemistry, Год журнала: 2024, Номер 464, С. 141657 - 141657
Опубликована: Окт. 15, 2024
Язык: Английский
Sustainability, Год журнала: 2024, Номер 16(21), С. 9276 - 9276
Опубликована: Окт. 25, 2024
This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. research aims to optimize hydrochemical regime experimental enhance growth metrics external characteristics breeders. The dataset encompasses parameters fish feeding base from where were cultivated. Genetic algorithms (GA) employed for hyperparameter optimization (HPO) deep neural networks (DNN) prediction productivity each pond under varying conditions, achieving an R2 score 0.94. GA-driven HPO process is robust method optimizing aquaculture practices by accurately predicting how different conditions feed bases influence tilapia. By determining these factors, model promotes improving breeding outcomes maximizing aquaculture. approach can also be applied other systems, enhancing efficiency sustainability across various species.
Язык: Английский
Процитировано
3Food Chemistry, Год журнала: 2024, Номер 464, С. 141657 - 141657
Опубликована: Окт. 15, 2024
Язык: Английский
Процитировано
1