AI-enabled clinical decision support tools for mental healthcare: A product review DOI Creative Commons
Anne‐Kathrin Kleine, Eesha Kokje, Pia Hummelsberger

и другие.

Artificial Intelligence in Medicine, Год журнала: 2024, Номер 160, С. 103052 - 103052

Опубликована: Дек. 6, 2024

The review seeks to promote transparency in the availability of regulated AI-enabled Clinical Decision Support Systems (AI-CDSS) for mental healthcare. From 84 potential products, seven fulfilled inclusion criteria. products can be categorized into three major areas: diagnosis autism spectrum disorder (ASD) based on clinical history, behavioral, and eye-tracking data; multiple disorders conversational medication selection history genetic data. We found five scientific articles evaluating devices' performance external validity. average completeness reporting, indicated by 52 % adherence Consolidated Standards Reporting Trials Artificial Intelligence (CONSORT-AI) checklist, was modest, signaling room improvement reporting quality. Our findings stress importance obtaining regulatory approval, adhering standards, staying up-to-date with latest changes landscape. Refining guidelines implementing effective tracking systems AI-CDSS could enhance oversight field.

Язык: Английский

An Exploratory Investigation of Chatbot Applications in Anxiety Management: A Focus on Personalized Interventions DOI Creative Commons
Alexia Manole, Răzvan Cârciumaru,

Rodica Brînzaș

и другие.

Information, Год журнала: 2024, Номер 16(1), С. 11 - 11

Опубликована: Дек. 29, 2024

Anxiety disorders are among the most prevalent mental health conditions globally, causing significant personal and societal burdens. Traditional therapies, while effective, often face barriers such as limited accessibility, high costs, stigma associated with seeking care. The emergence of artificial intelligence (AI) chatbots offers a novel solution by providing accessible, cost-effective, immediate support for individuals experiencing anxiety. This comprehensive review examines evolution, efficacy, advantages, limitations, challenges, future perspectives AI in treatment anxiety disorders. A methodologically rigorous literature search was conducted across multiple databases, focusing on publications from 2010 to 2024 that evaluated chatbot interventions targeting symptoms. Empirical studies demonstrate can effectively reduce symptoms delivering therapeutic like cognitive-behavioral therapy through interactive personalized dialogues. advantages include increased accessibility without geographical or temporal reduced an anonymity encourages openness reduces stigma. However, limitations persist, lack human empathy, ethical privacy concerns related data security, technical challenges understanding complex emotions. key identified involve enhancing emotional chatbots, integrating them traditional therapy, establishing robust frameworks ensure user safety protection. Future research should focus improving capabilities, personalization, cultural adaptation, engagement. In conclusion, represent promising adjunct treating disorders, offering scalable complement services. Balancing technological innovation responsibility is crucial maximize their potential benefits.

Язык: Английский

Процитировано

2

Mental Healthcare Chatbot Based on Custom Diagnosis Documents Using a Quantized Large Language Model DOI
Ayush Kumar,

Sanidhya Sharma,

Shreyansh Gupta

и другие.

2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Год журнала: 2024, Номер unknown, С. 1 - 6

Опубликована: Март 14, 2024

This research presents a novel retrieval-based question-answering (QA) framework utilizing LangChain's (version 0.1.6) modular architecture and Chainlit's 0.7.700) conversational interface. Our system efficiently handles PDF directory documents, generates sentence embeddings with HuggingFace's pre-trained model, stores vectors in FAISS for fast search, employs the powerful CTransformers 0.2.27) Llama-2-7B-Chat-GGUF guides it custom prompt template accurate factual responses. The integrated Chainlit interface facilitates user interaction, demonstrating framework's potential knowledge-intensive domains like medical chatbots.

Язык: Английский

Процитировано

1

État de la situation sur les impacts sociétaux de l'IA et du numérique - 2024 DOI
Lyse Langlois, Martin Cousineau,

Marie-Pierre Gagnon

и другие.

Опубликована: Май 13, 2024

L'État de la situation sur les impacts sociétaux l'intelligence artificielle et du numérique fait état des connaissances actuelles l'IA numérique, structurées autour sept axes recherche l'Obvia : santé, éducation, travail emploi, éthique gouvernance, droit, arts médias, transition socio-écologique. Hypertrucages, désinformation, empreinte environnementale, droit d'auteur, évolution conditions travail… Le document recense grandes questions soulevées par le déploiement progressif ces nouvelles technologies, auxquelles viennent s'ajouter cas d'usages pistes d'action. Il s'impose ainsi comme un outil complet indispensable pour accompagner prise décision dans tous secteurs bouleversés changements.

Процитировано

1

A Chatbot (Juno) Prototype to Deploy a Behavioral Activation Intervention to Pregnant Women: Qualitative Evaluation Using a Multiple Case Study DOI Creative Commons
Elisa Mancinelli, Simone Magnolini, Silvia Gabrielli

и другие.

JMIR Formative Research, Год журнала: 2024, Номер 8, С. e58653 - e58653

Опубликована: Авг. 14, 2024

Despite the increasing focus on perinatal care, preventive digital interventions are still scarce. Furthermore, literature suggests that design and development of these mainly conducted through a top-down approach limitedly accounts for direct end user perspectives.

Язык: Английский

Процитировано

1

AI-enabled clinical decision support tools for mental healthcare: A product review DOI Creative Commons
Anne‐Kathrin Kleine, Eesha Kokje, Pia Hummelsberger

и другие.

Artificial Intelligence in Medicine, Год журнала: 2024, Номер 160, С. 103052 - 103052

Опубликована: Дек. 6, 2024

The review seeks to promote transparency in the availability of regulated AI-enabled Clinical Decision Support Systems (AI-CDSS) for mental healthcare. From 84 potential products, seven fulfilled inclusion criteria. products can be categorized into three major areas: diagnosis autism spectrum disorder (ASD) based on clinical history, behavioral, and eye-tracking data; multiple disorders conversational medication selection history genetic data. We found five scientific articles evaluating devices' performance external validity. average completeness reporting, indicated by 52 % adherence Consolidated Standards Reporting Trials Artificial Intelligence (CONSORT-AI) checklist, was modest, signaling room improvement reporting quality. Our findings stress importance obtaining regulatory approval, adhering standards, staying up-to-date with latest changes landscape. Refining guidelines implementing effective tracking systems AI-CDSS could enhance oversight field.

Язык: Английский

Процитировано

1