Natural Hazards, Год журнала: 2024, Номер unknown
Опубликована: Дек. 2, 2024
Язык: Английский
Natural Hazards, Год журнала: 2024, Номер unknown
Опубликована: Дек. 2, 2024
Язык: Английский
Alexandria Engineering Journal, Год журнала: 2024, Номер 92, С. 346 - 357
Опубликована: Март 9, 2024
Predicting cyclone intensity is an important aspect of weather forecasting since it influences disaster preparation and response. This framework addresses the pressing need for precise prediction by presenting a unique predictive model based on hybrid CNN Bi-LSTM architecture optimized using Genetic Algorithm (GA) enhanced Fruit Fly Optimizer (FFO). Existing methods have primarily relied traditional machine learning models meteorological data, demonstrating limitations in capturing complex spatial-temporal patterns inherent evolution. These drawbacks include insufficient feature extraction abilities, underutilization convolutional neural networks (CNN), poor tuning. method incorporates that tuned (FFO), resulting higher accuracy. The experimental results are implemented Python software, they reveal this outperforms current average 21% when compared to existing such as VGG-16 achieved accuracy 78% Ty 5-CNN (95.23%). suggested CNN-Bi-LSTM predicts strength with excellent 99.4%. approach offers possible avenue increasing prediction, hence improving preparedness risk mitigation efforts sensitive locations.
Язык: Английский
Процитировано
9Discover Geoscience, Год журнала: 2024, Номер 2(1)
Опубликована: Июль 16, 2024
Abstract The increasing frequency of flood disasters around the globe highlights need for creative approaches to improve disaster preparedness. This thorough analysis and assessment explore topic enhancing resilience by utilising cutting-edge geo-computational techniques. By combining a variety techniques, such as remote sensing, geographic information systems (GIS), LiDAR, unmanned aerial vehicles (UAVs), technologies like machine learning geospatial big data analytics, study provides complex framework monitoring, risk assessment, mitigation. using sensing technology, occurrences can be tracked in real time inundations may precisely mapped, which makes proactive response plans possible. GIS facilitates effective evacuation planning streamlining spatial decision-making procedures providing critical insights into risky locations. High-resolution elevation is provided LiDAR essential precise modelling simulation. Unmanned Aerial Vehicles (UAVs) quickly deployed assist with situational awareness damage during disaster. Furthermore, predictive skills are enhanced combination opening door creation adaptive reaction early warning systems. investigation how tools significantly community lessen negative effects disasters. After review literature case studies, this clarifies these might preparation great extent.
Язык: Английский
Процитировано
3Computer Methods and Programs in Biomedicine, Год журнала: 2024, Номер 257, С. 108459 - 108459
Опубликована: Окт. 10, 2024
Язык: Английский
Процитировано
1Natural Hazards, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 4, 2024
Язык: Английский
Процитировано
1Natural Hazards, Год журнала: 2024, Номер unknown
Опубликована: Дек. 2, 2024
Язык: Английский
Процитировано
1