Food Packaging and Shelf Life, Год журнала: 2025, Номер 49, С. 101493 - 101493
Опубликована: Апрель 8, 2025
Язык: Английский
Food Packaging and Shelf Life, Год журнала: 2025, Номер 49, С. 101493 - 101493
Опубликована: Апрель 8, 2025
Язык: Английский
Liquids, Год журнала: 2024, Номер 4(3), С. 518 - 524
Опубликована: Авг. 2, 2024
This study explores the application of fine-tuned large language models for predicting physicochemical properties, specifically focusing on Abraham model solute descriptors (E, S, A, B, V) and modified solvent parameters (e0, s0, a0, b0, v0). By leveraging ChemLLaMA, a specialized version LLaMA cheminformatics tasks, we developed AbraLlama-Solvent AbraLlama-Solute using curated datasets experimentally derived parameters. Our findings demonstrate that predict with high accuracy, comparable to existing methods. The shows varying prediction accuracy across different solvents, influenced by their position within chemical space, while consistently predicts accuracy. Both are available as applications Hugging Face, facilitating easy predictions from SMILES strings. research highlights potential LLMs in chemistry applications, offering practical tools comparison expanding applicability solvation equations broader range organic solvents.
Язык: Английский
Процитировано
5Analytical Methods, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
2-Methyltetrahydrofuran (MTHF) improved separation efficiency, sample loading, and purification, reducing solvent use by 87% process time 89%. It enhanced loading capacity solubility, offering a sustainable, cost-effective solution.
Язык: Английский
Процитировано
0Food Packaging and Shelf Life, Год журнала: 2025, Номер 49, С. 101493 - 101493
Опубликована: Апрель 8, 2025
Язык: Английский
Процитировано
0