Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks DOI Creative Commons
Alexis Alonso-Bastida,

Marisol Cervantes-Bobadilla,

Dolores Azucena Salazar-Piña

и другие.

Journal of King Saud University - Computer and Information Sciences, Год журнала: 2023, Номер 36(1), С. 101905 - 101905

Опубликована: Дек. 31, 2023

In this paper, the main objective is to estimate percentage of glycosylated hemoglobin through an easily accessible computational platform risk generating type 2 diabetes mellitus in Mexican population. The estimation tool developed artificial neural network model, which was trained and validated according a population sample 1120 people between 18 59 years old. model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, whether person suffers from any chronic degenerative disease other than T2DM. We used as output, estimated dynamic glucose model. results present coefficient determination 99%, demonstrating acceptable performance aid for health personnel, seeks generate first approximation glycemic status those communities with high marginalization index prevention strategies.

Язык: Английский

Optimizing Artificial Neural Network Learning Using Improved Reinforcement Learning in Artificial Bee Colony Algorithm DOI Creative Commons
Taninnuch Lamjiak, Booncharoen Sirinaovakul,

Siriwan Kornthongnimit

и другие.

Applied Computational Intelligence and Soft Computing, Год журнала: 2024, Номер 2024(1)

Опубликована: Янв. 1, 2024

Artificial neural networks (ANNs) are widely used machine learning techniques with applications in various fields. Heuristic search optimization methods typically to minimize the loss function ANNs. However, these can lead network become stuck local optima, limiting performance. To overcome this challenge, study introduces an improved approach, improvement of reinforcement artificial bee colony (improved R‐ABC) algorithm, enhance process for The proposed method aims limitations heuristic and improve efficiency weight adjustment This new approach enhances discovery phase traditional R‐ABC by including parameters neighboring food sources, augmenting capabilities finding optimal solution. performance was compared ANNs utilizing backpropagation stochastic gradient descent (SGD) Adam optimizers, as well other swarm intelligence (SI) such particle (PSO) R‐ABC. results showed that both PSO continuously solutions across all benchmark datasets. In iris dataset, SI approaches consistently achieved F 1‐scores exceeding 0.94, outperforming SGD Adam. For datasets, generally outperformed methods. indicate when is applied ANNs, it outperforms optimization, especially size expands. Although faster execution times TensorFlow, suggests using model accuracy efficiency. Advanced increase ability obtain solutions. Enhanced algorithms significantly ANN training efficiency, complex high‐dimensional

Язык: Английский

Процитировано

2

J-type random 2,3 satisfiability: a higher-order logical rule in discrete hopfield neural network DOI
Xiaofeng Jiang, Mohd Shareduwan Mohd Kasihmuddin, Yueling Guo

и другие.

Evolutionary Intelligence, Год журнала: 2024, Номер 17(5-6), С. 3317 - 3336

Опубликована: Апрель 24, 2024

Язык: Английский

Процитировано

1

A novel optimized hybrid machine learning model to enhance the prediction accuracy of hourly building energy consumption DOI
Rajasekar Thota, Nidul Sinha

Energy Sources Part A Recovery Utilization and Environmental Effects, Год журнала: 2024, Номер 46(1), С. 9112 - 9135

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

1

Intrusion detection system in cloud computing by utilizing VTR-HLSTM based on deep learning DOI Open Access

Valavan Woothukadu Thirumaran,

Nalini Joseph, G. Umarani Srikanth

и другие.

Indonesian Journal of Electrical Engineering and Computer Science, Год журнала: 2024, Номер 33(3), С. 1829 - 1829

Опубликована: Фев. 16, 2024

<div>Cloud computing (CC) is a rapidly developing IT approach with intrusion detection system being crucial tool for safeguarding virtual networks and machines from potential threats, thereby mitigating security concerns in the cloud environment. The (IDS) demands significant improvements, primarily based on optimizing performance bolstering measures. This research aims to implement an IDS utilizing deep learning (DL) method. DL model promising technique widely used detect intrusions. implemented hierarchical long short-term memory (HLSTM) method’s evaluated feature selection through variance threshold-based regression (VTR) two network datasets: Bot-IoT lab-knowledge discovery data mining (NSL-KDD). paper concludes use of resulting high performance. Moreover, method NSL-KDD datasets obtains respective accuracies 99.50% 0.995. It compared existing methods namely, ensemble ID CC DL, LeNet, fuzzy neural Honey Bader algorithm privacy-preserving ID, improved metaheuristics logic-based security, beluga whale-tasmanian devil optimization convolutional (CNN) TL, chronological slap swarm algorithm-based belief (DBN), dragonfly invasive weed optimization-based Shepard CNN.</div>

Язык: Английский

Процитировано

0

Pediatric pneumonia detection using vision transformer DOI
Denis Eka Cahyani, Faisal Farris Setyawan, Anjar Dwi Hariadi

и другие.

AIP conference proceedings, Год журнала: 2024, Номер 3203, С. 040001 - 040001

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Examining Emotional Reactions to the COVID‐19 Crisis Through Twitter Data Analysis: A Comparative Study of Classification Techniques DOI Creative Commons

Saira Yaqub,

Muhammad Shoaib, Abdul Jaleel

и другие.

Applied Computational Intelligence and Soft Computing, Год журнала: 2024, Номер 2024(1)

Опубликована: Янв. 1, 2024

COVID‐19 has significantly impacted peoples’ mental health because of isolation and social distancing measures. It practically impacts every segment people’s daily lives causes a medical problem that spreads throughout the entire world. This pandemic caused an increased emotional distress. Since everyone been affected by epidemic physically, emotionally, financially, it is crucial to examine comprehend reactions as crisis affects health. study uses Twitter data understand what people feel during pandemic. We collected about isolation, preprocessed text, then classified tweets into various emotion classes. The are using twarc library academic researcher account labeled Vader analyzer after preprocessing. trained five machine learning models, namely, support vector (SVM), Naïve Bayes, KNN, decision tree, logistic regression find patterns trends in emotions. individuals analyzed. applied precision, recall, F 1‐score, accuracy evaluation metrics, which shows SVM performed best among other models. Our results show isolated felt emotions, out which, fear, sadness, surprise were most common. gives insights impact power understanding outcomes. findings can be used develop targeted interventions strategies address toll

Язык: Английский

Процитировано

0

Exploring the efficacy of a supervised learning approach in 3 satisfiability reverse analysis method DOI
Nur ‘Afifah Rusdi, Nurul Atiqah Romli, Gaeithry Manoharam

и другие.

AIP conference proceedings, Год журнала: 2024, Номер 3158, С. 030009 - 030009

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Logic mining model in 3-satisfiability reverse analysis into discrete hopfield neural network DOI
Gaeithry Manoharam, Nurul Atiqah Romli, Suad Abdeen

и другие.

AIP conference proceedings, Год журнала: 2024, Номер 3158, С. 050003 - 050003

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

An enzyme-inspired specificity in deep learning model for sleep stage classification using multi-channel PSG signals input: Separating training approach and its performance on cross-dataset validation for generalizability DOI Creative Commons
Nantawachara Jirakittayakorn, Yodchanan Wongsawat, Somsak Mitrirattanakul

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 182, С. 109138 - 109138

Опубликована: Сен. 20, 2024

Язык: Английский

Процитировано

0

Interpretable neural network classification model using first-order logic rules DOI Creative Commons
Hu Tuo, Zuqiang Meng,

Zihao Shi

и другие.

Neurocomputing, Год журнала: 2024, Номер 614, С. 128840 - 128840

Опубликована: Ноя. 8, 2024

Язык: Английский

Процитировано

0