Influence Maximization in Hypergraphs Using Multi-Objective Evolutionary Algorithms DOI
Stefano Genetti, Eros Ribaga, Elia Cunegatti

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 217 - 235

Опубликована: Янв. 1, 2024

Язык: Английский

Maximizing influence by combining influential node identification and overlapping influence reduction DOI
Zhili Zhao, Yue Sun,

Xupeng Liu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127568 - 127568

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

MHPD: An efficient evaluation method for influence maximization on hypergraphs DOI
Haosen Wang, Qingtao Pan, Jun Tang

и другие.

Communications in Nonlinear Science and Numerical Simulation, Год журнала: 2024, Номер 139, С. 108268 - 108268

Опубликована: Авг. 14, 2024

Язык: Английский

Процитировано

2

Hypergraph-Based Influence Maximization in Online Social Networks DOI Creative Commons
Chuangchuang Zhang,

Wenlin Cheng,

Fuliang Li

и другие.

Mathematics, Год журнала: 2024, Номер 12(17), С. 2769 - 2769

Опубликована: Сен. 7, 2024

Influence maximization in online social networks is used to select a set of influential seed nodes maximize the influence spread under given diffusion model. However, most existing proposals have huge computational costs and only consider dyadic relationship between two nodes, ignoring higher-order relationships among multiple nodes. It limits applicability accuracy models real complex networks. To this end, paper, we present novel information model by introducing hypergraph theory determine jointly considering adjacent improve efficiency. We mathematically formulate problem further propose sampling greedy algorithm (HSGA) effectively In HSGA, random walk-based method Monte Carlo-based approximation are devised achieve fast calculation node influences. conduct simulation experiments on six datasets for performance evaluations. Simulation results demonstrate effectiveness efficiency HSGA has lower cost higher selection than comparison mechanisms.

Язык: Английский

Процитировано

1

Influence Maximization in Hypergraphs Using Multi-Objective Evolutionary Algorithms DOI
Stefano Genetti, Eros Ribaga, Elia Cunegatti

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 217 - 235

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0