Machine learning analysis/optimization of auxetic performance of a polymeric meta-hybrid structure of re-entrant and meta-trichiral DOI

Xiangning Zhou,

Yuchi Leng, Ashit Kumar Dutta

и другие.

European Journal of Mechanics - A/Solids, Год журнала: 2024, Номер unknown, С. 105463 - 105463

Опубликована: Окт. 1, 2024

Язык: Английский

An analysis of waste/biomass gasification producing hydrogen-rich syngas: A review DOI Creative Commons

Jigneshkumar Makwana,

A.D. Dhass,

P.V. Ramana

и другие.

International Journal of Thermofluids, Год журнала: 2023, Номер 20, С. 100492 - 100492

Опубликована: Окт. 18, 2023

In the last few decades, population growth level has increased exponentially so waste disposal gradually. Wastes like biodegradable wastes, kitchen hotel and other agro wastes can be processed through bio methanation composting technology but non-biodegradable materials plastics, rubber, industrial sludge, cannot in simple ways or technologies. These are critical to handle need robust technology. Gasification incinerators a utilize these convert them into useful energy. However, incinerator drawback of control over emissions generated by material combustion. is best-suited which gaseous form this gas provides heat prime movers generate energy/power. Carbon monoxide, hydrogen, methane, carbon dioxide, oxygen, nitrogen main components synthetic (syngas), low calorific value. Increased hydrogen monoxide concentrations improve gas's Different gasification methods using agent as steam, catalytic gasification, different combination fuels (waste-coal/biomass) used enrich content syngas. This paper reviewed theory waste-to-energy technologies, incineration technology, for increasing syngas, also methods. review discusses enrichment.

Язык: Английский

Процитировано

34

Machine learning utilization on air gasification of polyethylene terephthalate waste DOI Creative Commons
Rezgar Hasanzadeh, Taher Azdast

Waste Management Bulletin, Год журнала: 2023, Номер 2(1), С. 75 - 82

Опубликована: Дек. 30, 2023

Studies in the field of machine learning utilization on air gasification polyethylene terephthalate (PET) waste are utmost importance and can contribute to solving environmental challenges associated with PET while also promoting development advanced technologies management renewable energy. The primary objective this study is focus process through algorithms. aim assess how well these algorithms predict evaluate performance waste. To achieve this, a model for created, developed evaluated based their performance. results suggest that H2/CO has high accuracy, as indicated by its R-sq value 91.86%. It important highlight models lower heating values cold gas efficiency show excellent 99.84%. predicted (higher than 90% higher 99% efficiency) indicate excel predicting future observations great accuracy.

Язык: Английский

Процитировано

27

Public acceptance towards plastic waste-to-energy gasification projects: The role of social trust and health consciousness DOI
Dan Cudjoe, Hong Wang

Journal of Environmental Management, Год журнала: 2024, Номер 356, С. 120737 - 120737

Опубликована: Март 26, 2024

Язык: Английский

Процитировано

8

Optimization of an eco-friendly municipal solid waste-to-multi-generation energy scheme integrated by MSW gasification and HSOFC: Regression analysis and machine learning study DOI

Weiyan Xu,

Jielei Tu,

Ning Xu

и другие.

Process Safety and Environmental Protection, Год журнала: 2023, Номер 182, С. 166 - 175

Опубликована: Ноя. 26, 2023

Язык: Английский

Процитировано

17

Waste-to-energy poly-generation scheme for hydrogen/freshwater/power/oxygen/heating capacity production; optimized by regression machine learning algorithms DOI
Qiuli Li,

Yuchi Leng,

Azher M. Abed

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 187, С. 876 - 891

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

7

Sustainable Freshwater/Energy Supply through Geothermal-Centered Layout Tailored with Humidification-Dehumidification Desalination Unit; Optimized by Regression Machine Learning Techniques DOI
Shuguang Li, Yuchi Leng, Rishabh Chaturvedi

и другие.

Energy, Год журнала: 2024, Номер 303, С. 131919 - 131919

Опубликована: Июнь 3, 2024

Язык: Английский

Процитировано

5

Synthesis, Modification, and Applications of Poly(vinyl chloride) (PVC) DOI
Ahmed K. Hussein, Emad Yousif,

Malath Khalaf Rasheed

и другие.

Polymer-Plastics Technology and Materials, Год журнала: 2024, Номер unknown, С. 1 - 40

Опубликована: Ноя. 1, 2024

One of the polymers with biggest production volume is poly(vinyl chloride) (PVC) considering their versatility, durability, lightweight, as well low cost production, plastics have recently become an essential part everyone's daily life. However, increased and usage poses significant environmental problems because incomplete utilization, a lengthy biodegradation period, detrimental effects on living things. This study examines latest findings in PVC research, including its properties, polymerization, modification, recycling, diverse applications. It has been proposed that during along application both inorganic organic thermal stabilizers, can mitigate some basic limiting characteristics PVC. chemistry extended by vast continuous study, mainly chemical transformations this polymeric material. describes modification using different materials active modifying agent. The latter included substitutions, modifications, nucleophilic radicals, removal or dehydrochlorination, grafting polymerizations. PVC's consequences are examined, overview functionalization provided article, discussion main reactivity trends lens recycling.

Язык: Английский

Процитировано

5

A New Polymeric Hybrid Auxetic Structure Additively Manufactured by Fused Filament Fabrication 3D Printing: Machine Learning-Based Energy Absorption Prediction and Optimization DOI Open Access
Rezgar Hasanzadeh

Polymers, Год журнала: 2024, Номер 16(24), С. 3565 - 3565

Опубликована: Дек. 20, 2024

The significance of this paper is an investigation into the design, development, and optimization a new polymeric hybrid auxetic structure by additive manufacturing (AM). This work will introduce innovative class integration arrow-head unit cell missing rib cell, which be fabricated using fused filament fabrication (FFF) technique, that is, one subset AM. performance validated through measurement its negative Poisson’s ratio, confirming potential for enhanced energy absorption. A chain regression, linear, quadratic polynomial machine learning algorithms are used to predict optimize absorption capability at variant processing conditions. Amongst them, regression model stands out with R-squared value 92.46%, reflecting excellent predictive additively manufactured structure. technique revealed printing speed 80 mm/s layer height 200 µm were critical values achieve maximum amount 5.954 kJ/m2, achieved temperature 244.65 °C. Such results also contribute development AM, since they show not only structures but how effective in AM process.

Язык: Английский

Процитировано

5

Performance prediction and regression analysis of scroll expander based on response surface methodology DOI Creative Commons

Kaixiang Zhen,

Lei Shi,

Yonggui Zhang

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер 60, С. 104766 - 104766

Опубликована: Июль 3, 2024

Язык: Английский

Процитировано

4

Heat Recovery Integration in a Hybrid Geothermal-based System Producing Power and Heating Using Machine Learning Approach to Maximize Outputs DOI Creative Commons

Hatem N.E. Gasmi,

Azher M. Abed, Ashit Kumar Dutta

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер unknown, С. 105210 - 105210

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

4