Advances in Space Research, Год журнала: 2024, Номер 74(1), С. 117 - 129
Опубликована: Март 28, 2024
Язык: Английский
Advances in Space Research, Год журнала: 2024, Номер 74(1), С. 117 - 129
Опубликована: Март 28, 2024
Язык: Английский
Chemosphere, Год журнала: 2023, Номер 343, С. 140198 - 140198
Опубликована: Сен. 15, 2023
Язык: Английский
Процитировано
15Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2023, Номер 134, С. 103536 - 103536
Опубликована: Дек. 19, 2023
Язык: Английский
Процитировано
13Remote Sensing, Год журнала: 2024, Номер 16(2), С. 229 - 229
Опубликована: Янв. 6, 2024
The spatiotemporal variations in suspended sediment concentration (SSC) the lower reaches of Yellow River exhibit significant variability and are influenced by reservoir operations. Understanding distribution characteristics SSC water holds crucial implications for environmental protection operation management. Based on daily-scale monitoring data from four hydrological stations River, this study established an remote sensing model applicable to Landsat series satellite data. independent variable model, Rrs(NIR)/(Rrs(G) + Rrs(R) Rrs(SWIR)), demonstrated sensitivity bodies with different values. Distinctive transport were observed across River. Spatially, values Sanmenxia Xiaolangdi reservoirs notably than those other river sections, averaging 1008.42 ± 602.83 mg/L 1177.89 627.95 mg/L, respectively. Over time, majority sections (96%) exhibited decreasing trends during 1984–2022, particularly downstream reservoir, average 4265.58 1101.77 1980s 1840.80 2255.15 2020s. Seasonal prominent, higher summer concentrations, 5536.43 2188.77 (2020s summer) 814.11 158.27 winter). Reductions 1984–2022 primarily occurred summer, weakening its seasonal Water discharge emerged as a critical factor influencing transport, increasing high-water-flow months. Following construction relationship between at underwent notable alterations. This enhances our understanding dynamics providing valuable insights utilizing long-term dynamic transport.
Язык: Английский
Процитировано
5International Journal of Digital Earth, Год журнала: 2024, Номер 17(1)
Опубликована: Март 11, 2024
Optical Water Type (OWT) analysis is crucial for comprehending water composition and quality, key factors in assessing quality over extensive areas. However, China's inland waters lack a standardized system such analysis. To quantitatively analyze the classification results, our study compared three K-means clustering methods, analyzing 1310 spectral data from various Chinese lakes reservoirs, thereby addressing this gap. The innovative split-merge method identified 13 distinct OWTs that more closely adhere to principles of minimizing intra-class distance maximizing inter-class distance. These were categorized into four groups: clear water, turbid eutrophic special type water. Additionally, we developed based on Spectral Angle Distance (SAD) evaluate capabilities 12 satellite sensors. results show Sentinel-3 OLCI (Ocean Land Color Instrument), MERIS (Medium Resolution Imaging Spectrometer), Sentinel-2 MSI (Multispectral Instrument) have best capabilities, making them well-suited large-scale monitoring OWT changes. Conversely, other sensors, as Sustainable Development Scientific Satellite-1 (SDGSAT-1), Landsat-8, GaoFen-6, GaoFen-1, GaoFen-2, Landsat-5, Landsat-7, Moderate Spectroradiometer (MODIS), HuanJing-1, necessitate consolidation types effective categorization, indicative their limited capabilities.
Язык: Английский
Процитировано
5Advances in Space Research, Год журнала: 2024, Номер 74(1), С. 117 - 129
Опубликована: Март 28, 2024
Язык: Английский
Процитировано
5