Опубликована: Янв. 1, 2025
Язык: Английский
Опубликована: Янв. 1, 2025
Язык: Английский
Sensors, Год журнала: 2025, Номер 25(2), С. 397 - 397
Опубликована: Янв. 10, 2025
Existing autonomous driving systems face challenges in accurately capturing drivers’ cognitive states, often resulting decisions misaligned with intentions. To address this limitation, study introduces a pioneering human-centric spatial cognition detecting system based on electroencephalogram (EEG) signals. Unlike conventional EEG-based that focus intention recognition or hazard perception, the proposed can further extract across two dimensions: relative distance and orientation. It consists of components: EEG signal preprocessing decoding, enabling to make more contextually aligned regarding targets drivers on. enhance detection accuracy cognition, we designed novel decoding method called Dual-Time-Feature Network (DTFNet). This approach integrates coarse-grained fine-grained temporal features signals different scales incorporates Squeeze-and-Excitation module evaluate importance electrodes. The DTFNet outperforms existing methods, achieving 65.67% 50.65% three-class tasks 84.46% 70.50% binary tasks. Furthermore, investigated dynamics observed perception occurs slightly later than their orientation, providing valuable insights into aspects processing.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0