Curiosity-Driven Camouflaged Object Segmentation DOI Creative Commons
Marco Y.C. Pang, Meijun Sun, Zheng Wang

и другие.

Applied Sciences, Год журнала: 2024, Номер 15(1), С. 173 - 173

Опубликована: Дек. 28, 2024

Camouflaged object segmentation refers to the task of accurately extracting objects that are seamlessly integrated within their surrounding environment. Existing deep-learning methods frequently encounter challenges in segmenting camouflaged objects, particularly capturing complete and intricate details. To this end, we propose a novel method based on Curiosity-Driven network, which is motivated by innate human tendency for curiosity when encountering ambiguous regions subsequent drive explore observe objects’ Specifically, proposed fusion bridge module aims exploit model’s inherent fuse these features extracted dual-branch feature encoder capture details object. Then, drawing inspiration from curiosity, curiosity-refinement progressively refine initial predictions exploring unknown object’s Notably, develop curiosity-calculation operation discover remove leading accurate results. Extensive quantitative qualitative experiments demonstrate model significantly outperforms existing competitors three challenging benchmark datasets. Compared with recently state-of-the-art method, our achieves performance gains 1.80% average Sα. Moreover, can be extended polyp industrial defects tasks, validating its robustness effectiveness.

Язык: Английский

Adaptive formation eco-driving framework for connected automated vehicles at signalized intersections: A deep reinforcement learning approach DOI
Yanyan Qin, Yu Huang, S. Yan

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127509 - 127509

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Load-deformation prediction of bored piles using sequential soil profile encoding with transformer architecture: A study of Bangkok subsoil DOI
Sompote Youwai,

Chissanupong Thongnoo

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127085 - 127085

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Cross-modal generalizable medical image segmentation with dual-domain deformable transformer and multitask adaptation DOI
Jie Cai, Haiyan Li, Mingchuan Tan

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127249 - 127249

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Enhancing Polyp Classification: A Comparative Analysis of Spatio-Temporal Techniques DOI
Aditi Jain, Saugata Sinha, Srijan Mazumdar

и другие.

Medical Engineering & Physics, Год журнала: 2025, Номер unknown, С. 104336 - 104336

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

SAMSAR: A modified SAM architecture for oceanic ship segmentation of satellite SAR images using CNN-based Cross-Fused Attention DOI

M. Rahimi,

Saeed Sharifian

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127852 - 127852

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

CIFFormer: A Contextual Information Flow Guided Transformer for colorectal polyp segmentation DOI
Cunlu Xu, Long Lin, Bin Wang

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 130413 - 130413

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Curiosity-Driven Camouflaged Object Segmentation DOI Creative Commons
Marco Y.C. Pang, Meijun Sun, Zheng Wang

и другие.

Applied Sciences, Год журнала: 2024, Номер 15(1), С. 173 - 173

Опубликована: Дек. 28, 2024

Camouflaged object segmentation refers to the task of accurately extracting objects that are seamlessly integrated within their surrounding environment. Existing deep-learning methods frequently encounter challenges in segmenting camouflaged objects, particularly capturing complete and intricate details. To this end, we propose a novel method based on Curiosity-Driven network, which is motivated by innate human tendency for curiosity when encountering ambiguous regions subsequent drive explore observe objects’ Specifically, proposed fusion bridge module aims exploit model’s inherent fuse these features extracted dual-branch feature encoder capture details object. Then, drawing inspiration from curiosity, curiosity-refinement progressively refine initial predictions exploring unknown object’s Notably, develop curiosity-calculation operation discover remove leading accurate results. Extensive quantitative qualitative experiments demonstrate model significantly outperforms existing competitors three challenging benchmark datasets. Compared with recently state-of-the-art method, our achieves performance gains 1.80% average Sα. Moreover, can be extended polyp industrial defects tasks, validating its robustness effectiveness.

Язык: Английский

Процитировано

0