Adaptive formation eco-driving framework for connected automated vehicles at signalized intersections: A deep reinforcement learning approach
Expert Systems with Applications,
Год журнала:
2025,
Номер
unknown, С. 127509 - 127509
Опубликована: Март 1, 2025
Язык: Английский
Load-deformation prediction of bored piles using sequential soil profile encoding with transformer architecture: A study of Bangkok subsoil
Expert Systems with Applications,
Год журнала:
2025,
Номер
unknown, С. 127085 - 127085
Опубликована: Фев. 1, 2025
Язык: Английский
Cross-modal generalizable medical image segmentation with dual-domain deformable transformer and multitask adaptation
Expert Systems with Applications,
Год журнала:
2025,
Номер
unknown, С. 127249 - 127249
Опубликована: Март 1, 2025
Язык: Английский
Enhancing Polyp Classification: A Comparative Analysis of Spatio-Temporal Techniques
Medical Engineering & Physics,
Год журнала:
2025,
Номер
unknown, С. 104336 - 104336
Опубликована: Апрель 1, 2025
Язык: Английский
SAMSAR: A modified SAM architecture for oceanic ship segmentation of satellite SAR images using CNN-based Cross-Fused Attention
Expert Systems with Applications,
Год журнала:
2025,
Номер
unknown, С. 127852 - 127852
Опубликована: Май 1, 2025
Язык: Английский
CIFFormer: A Contextual Information Flow Guided Transformer for colorectal polyp segmentation
Neurocomputing,
Год журнала:
2025,
Номер
unknown, С. 130413 - 130413
Опубликована: Май 1, 2025
Язык: Английский
Curiosity-Driven Camouflaged Object Segmentation
Applied Sciences,
Год журнала:
2024,
Номер
15(1), С. 173 - 173
Опубликована: Дек. 28, 2024
Camouflaged
object
segmentation
refers
to
the
task
of
accurately
extracting
objects
that
are
seamlessly
integrated
within
their
surrounding
environment.
Existing
deep-learning
methods
frequently
encounter
challenges
in
segmenting
camouflaged
objects,
particularly
capturing
complete
and
intricate
details.
To
this
end,
we
propose
a
novel
method
based
on
Curiosity-Driven
network,
which
is
motivated
by
innate
human
tendency
for
curiosity
when
encountering
ambiguous
regions
subsequent
drive
explore
observe
objects’
Specifically,
proposed
fusion
bridge
module
aims
exploit
model’s
inherent
fuse
these
features
extracted
dual-branch
feature
encoder
capture
details
object.
Then,
drawing
inspiration
from
curiosity,
curiosity-refinement
progressively
refine
initial
predictions
exploring
unknown
object’s
Notably,
develop
curiosity-calculation
operation
discover
remove
leading
accurate
results.
Extensive
quantitative
qualitative
experiments
demonstrate
model
significantly
outperforms
existing
competitors
three
challenging
benchmark
datasets.
Compared
with
recently
state-of-the-art
method,
our
achieves
performance
gains
1.80%
average
Sα.
Moreover,
can
be
extended
polyp
industrial
defects
tasks,
validating
its
robustness
effectiveness.
Язык: Английский