Analysis of Managing and Controlling Bank Customers Using Machine Learning Algorithms DOI
Elvir Akhmetshin, Ildar Begishev, Ilyоs Abdullaev

и другие.

Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 377 - 388

Опубликована: Янв. 1, 2024

Язык: Английский

Development of Entrepreneurial Activity Using the Integration of Human Capital and Green Technologies to Optimize the Sustainable Development of the Territories DOI Open Access
Алма Каршалова, Aidos Akpanov, Santay Azizbekovna Tleubayeva

и другие.

Qubahan Academic Journal, Год журнала: 2025, Номер 4(4), С. 306 - 317

Опубликована: Янв. 1, 2025

The development of the tourism sector faces serious challenges, which are related to its environmental transformation, digitalization, and integration new technologies, as well competitiveness. Tourists' behavior is also changing. future demand for likely be driven by growing awareness, increased use digital services a shift towards more personalized travel experience, ensuring well-being better engagement with local communities culture. Meeting requirements modern industry problem not only Republic Kazakhstan but other countries that strive sustainable sector. purpose study identify ways develop entrepreneurial activity integrating human capital green technologies optimize paper examines basic theoretical concepts essence forms presents concept achieve principles development. Based on an expert survey, strengths, weaknesses, opportunities, threats analysis, statistical methods, main promotion tourism, measures integrate into activities in East Region, have been identified. authors concluded introduction them provide standards quality tourist while preserving natural resources region.

Язык: Английский

Процитировано

0

Application of CNN-Based Financial Risk Identification and Management Convolutional Neural Networks in Financial Risk DOI Creative Commons
Zhen Wang

Systems and Soft Computing, Год журнала: 2025, Номер 7, С. 200215 - 200215

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

0

Recent Advances and Applications of the Multi-verse Optimiser Algorithm: A Survey from 2020 to 2024 DOI

Julakha Jahan Jui,

M. M. Imran Molla, Mohd Ashraf Ahmad

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 26, 2025

Язык: Английский

Процитировано

0

Improvement of financial analysis of cluster activities DOI Creative Commons
Ilhom Sayitkulovich Оchilov

BIO Web of Conferences, Год журнала: 2024, Номер 140, С. 06007 - 06007

Опубликована: Янв. 1, 2024

This research paper addresses the critical need for an advanced framework to elevate financial analysis of cluster activities. Clusters, defined as geographically proximate groups interconnected companies and associated institutions in a particular field, have emerged key drivers economic growth. However, existing methods often fall short capturing complex dynamics interdependencies within these clusters. The delves into current challenges limitations conventional context It highlights inadequacy standard metrics unique characteristics synergies inherent clusters, leading suboptimal decision-making processes. By integrating data analytics, risk assessment models, qualitative assessments, aims provide holistic view landscape Also explores broader impact on regional development potential scalability across various industries. contributes ongoing discourse methodologies, specifically tailored proposed offers sophisticated practical solution address shortcomings approaches, thereby empowering stakeholders make more informed decisions dynamic cluster- based economies.

Язык: Английский

Процитировано

0

Digitalization Tools for Providing Food Security of a State DOI Creative Commons
Veronika Denisovich,

Andrey Majorov,

I. Kravchenko

и другие.

BIO Web of Conferences, Год журнала: 2024, Номер 140, С. 03015 - 03015

Опубликована: Янв. 1, 2024

The research objective is to identify the most promising areas of digitalization in field food security Russia. methodological basis study comparative analysis. It was used determine consequences use digital technologies various based on 2021 statistical data. Results. author defined Russian model for ensuring Russia, revealing agriculture Russia: financial settlements electronic form, access databases via Internet, and document management systems. prospects are related specification economic returns from each seen viewpoint quantitative measurement. empirical value revealed improving sphere explained by fact that orientation state regulators economy towards it will ensure maximum potential strengthening Russia 2030-2031.

Язык: Английский

Процитировано

0

The Advancement and Utilization of Artificial Intelligence and Machine Learning in the Financial Industry and Its Impact on Macro and Microeconomics DOI

Eduard Osadchy,

Irina V. Kosorukova,

Komiljon Ulmasovich Khamraev

и другие.

Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 203 - 218

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Investment risk forecasting model using extreme value theory approach combined with machine learning DOI Creative Commons

Melina Melina,

Sukono,

Herlina Napitupulu

и другие.

AIMS Mathematics, Год журнала: 2024, Номер 9(11), С. 33314 - 33352

Опубликована: Янв. 1, 2024

<p>Investment risk forecasting is challenging when the stock market characterized by non-linearity and extremes. Under these conditions, VaR estimation based on assumption of distribution normality becomes less accurate. Combining extreme value theory (EVT) with machine learning (ML) produces a model that detects learns heavy tail patterns in data distributions containing values while being effective non-linear systems. We aimed to develop an investment capital characteristics using method EVT approach combined ML (VaR<sub>GPD-ML(α)</sub>). The combination methods used multivariate time series RNN, LSTM, GRU algorithms obtain ML-based returns. POT was for estimation. backtesting validate model. Our results showed determining threshold normal will identify ideal number, minimum bias, following GPD. VaR<sub>GPD-ML(α)</sub> valid all samples at α = 0.95 0.99. Generally, this greater estimated than VaR<sub>GPD(α)</sub> 95% confidence level.</p>

Язык: Английский

Процитировано

0

Analysis of Managing and Controlling Bank Customers Using Machine Learning Algorithms DOI
Elvir Akhmetshin, Ildar Begishev, Ilyоs Abdullaev

и другие.

Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 377 - 388

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0