Опубликована: Авг. 29, 2024
Язык: Английский
Опубликована: Авг. 29, 2024
Язык: Английский
Results in Engineering, Год журнала: 2024, Номер unknown, С. 103692 - 103692
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
13Multimedia Tools and Applications, Год журнала: 2025, Номер unknown
Опубликована: Янв. 10, 2025
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2025, Номер 7(3)
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
0Lecture notes in networks and systems, Год журнала: 2025, Номер unknown, С. 339 - 352
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0International Journal of Systems Assurance Engineering and Management, Год журнала: 2024, Номер unknown
Опубликована: Сен. 19, 2024
Процитировано
2International Journal of Systems Assurance Engineering and Management, Год журнала: 2024, Номер unknown
Опубликована: Сен. 20, 2024
Язык: Английский
Процитировано
2Applied Sciences, Год журнала: 2024, Номер 14(12), С. 5103 - 5103
Опубликована: Июнь 12, 2024
Glaucoma is a common eye disease that damages the optic nerve and leads to loss of vision. The shows few symptoms in early stages, making its identification complex task. To overcome challenges associated with this task, study aimed tackle localization segmentation disc, as well classification glaucoma. For disc segmentation, we propose novel metaheuristic approach called Grey Wolf Optimization (GWO). Two different approaches are used for glaucoma classification: one-stage approach, which whole image without cropping classification, two-stage approach. In region detected using You Only Look Once (YOLO) detection algorithm. interest (ROI) identified, performed pre-trained convolutional neural networks (CNNs) vision transformation techniques. addition, both applied combination CNN Random Forest GWO achieved an average sensitivity 96.04%, specificity 99.58%, accuracy 99.39%, DICE coefficient 94.15%, Jaccard index 90.4% on Drishti-GS dataset. proposed method remarkable results high-test 100% 88.18% hold-out validation three-fold cross-validation dataset, 96.15% 93.84% ORIGA five-fold cross-validation, respectively. Comparing previous studies, model outperforms them. use Swin transformer effectiveness classifying subsets data.
Язык: Английский
Процитировано
12022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Год журнала: 2023, Номер unknown, С. 1 - 6
Опубликована: Июль 6, 2023
The Internet of Vehicles (IoV) has replaced vehicular networks as the preferred paradigm a result enormous expansion in computer and network capabilities. Because dynamic IoV's diverse nature necessitates effective resource management, which calls for cutting-edge technologies like Software Defined Networking (SDN), Machine Learning (ML), others. In Defined-IoV (SD-IoV) networks, Road Side Units (RSUs) are charge effectiveness provide number safety features. However, it is not practical to deploy enough RSUs, current RSU placement does complete coverage an area. Furthermore, any lapse security or performance negative influence on driving. Thus, objective this study increase IoV by using different types learning Algorithm efficiency. As result, suggested use XG-BOOST method decrease communication time while expanding among devices. Along with method, paper works CAN-OITDS Dataset. comparative conventional ML algorithms shows that IDS detects malicious attack help XGBOOST high accuracy 96.04%.
Язык: Английский
Процитировано
3AIP conference proceedings, Год журнала: 2024, Номер 3232, С. 040035 - 040035
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Опубликована: Авг. 29, 2024
Язык: Английский
Процитировано
0