Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Computer and Communications, Год журнала: 2024, Номер 12(10), С. 78 - 93
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
9Engineering Technology & Applied Science Research, Год журнала: 2025, Номер 15(1), С. 19700 - 19711
Опубликована: Фев. 2, 2025
Rapid innovation leading to better patient outcomes have been driven by recent breakthroughs in the Internet of Things (IoT), which drastically changed healthcare sector. In order highlight importance IoT applications, this article presents a user-friendly and integrated approach for bibliometric analysis. Traditional methods often rely solely on Web Science (WoS) or Scopus, limiting scope To address issue, proposed uses R program Bibliometrix combine data from seven databases, namely WoS, IEEE, ACM Digital Library, PubMed, Direct, Google Scholar (GS). After having developed an inclusion/exclusion criterion, 2,990 journal papers published between 2011 2022 were subjected thorough literature review This study demonstrates that industry is highly interested IoT, as well rapid growth research into blockchain, Artificial Intelligence (AI), 5G telecoms, analytics. Authentication methods, fog computing, cloud-IoT integration, cognitive smart healthcare, other essential topics are further examined employing co-citation network addition illuminating potential avenues investigation, these results provide academics with comprehensive picture where standing at moment. The output conducted analysis shows there has dramatic uptick publishing since 2017, most articles appearing prestigious journals related computer science. By integrating multiple methodology represents significant advancement analysis, enabling more exploration IoT's impact facilitating deeper understanding emerging trends critical themes rapidly evolving field.
Язык: Английский
Процитировано
0Sensors, Год журнала: 2025, Номер 25(6), С. 1649 - 1649
Опубликована: Март 7, 2025
Smart cities have witnessed a transformation in urban living through the Internet of Things (IoT), which has improved connectedness, efficiency, and sustainability. However, adoption IoT devices presents significant security vulnerabilities, particularly authentication. The specific limitations contexts, such as constrained computational resources, are frequently not adequately addressed by traditional authentication techniques. existing methods used for smart critically examined this review study. We evaluate advantages disadvantages each mechanism, emphasizing real-world applicability. Additionally, we examine cutting-edge developments that offer scalability, blockchain technology, biometric authentication, machine learning-based solutions. This study aims to identify gaps propose future research directions develop robust frameworks protect user privacy data integrity.
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(11), С. 207 - 223
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Journal of Computer and Communications, Год журнала: 2024, Номер 12(11), С. 141 - 161
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0American Journal of Industrial and Business Management, Год журнала: 2024, Номер 14(11), С. 1545 - 1561
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Journal of Infrastructure Policy and Development, Год журнала: 2024, Номер 8(15), С. 8848 - 8848
Опубликована: Дек. 13, 2024
The usage of cybersecurity is growing steadily because it beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone connected through the internet. It’s much easier for a thief connect important data cyber-attacks. Everyone needs precious personal and sustainable infrastructure development in science. However, systems protecting our using existing difficult. There are different types threats. It be phishing, malware, ransomware, so on. To prevent these attacks, need advanced systems. Many software helps not able early detect suspicious internet threat exchanges. This research used machine learning models enhance detection. Reducing cyberattacks enhancing protection; this system makes possible browse anywhere securely. Kaggle dataset was collected build technology untrustworthy online exchanges early. obtain better results accuracy, few pre-processing approaches were applied. Feature engineering applied improve quality Ultimately, random forest, gradient boosting, XGBoost, Light GBM achieve goal. Random forest obtained 96% which best helpful get good outcome social system.
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 134 - 150
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2024, Номер 12(12), С. 55 - 71
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0