The Realistic Dilemmas and Possible Paths of Artificial Intelligence Enabling Teacher Education DOI Creative Commons
Qin Zhou

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract This paper explains the dilemma of artificial intelligence in relation to development teacher education based on functional structure and activity characteristics education. Then, after designing a survey questionnaire factors affecting empowered by completing reliability test, collects initial data form distributing questionnaires analyzes detail least squares estimation mean, variance, standard deviation, correlation coefficient, regression coefficient needed process analyzing carry out analysis instances. The coefficients training, professional development, policy support, resource allocation, literacy, educational information technology behaviors, AI-enabled are 0.674 (0.003), 0.496 (0.001), 0.259 (0.009), 0.371 (0.008), 0.639 (0.004), 0.325 (0.007). Their corresponding were 0.616 (t=59.852, P=0.003), 0.021 (t=0.018, P=0.007), 0.078 (t=5.668, P=0.005), 0.032 (t=3.282, P=0.009), 0.239 (t=29.734, P=0.008), 0.137 (t=5.406, P=0.001), indicating that these have significant impact relationship

Язык: Английский

Generative artificial intelligence in education: analysis of trends and prospects DOI

E. A. Pospelova,

П.Л. Отоцкий,

Е. Н. Горлачева

и другие.

Vocational education and labour market, Год журнала: 2024, Номер 12(3(58)), С. 6 - 21

Опубликована: Сен. 12, 2024

Введение. Появление и массовое распространение генеративного искусственного интеллекта (ГИИ), в том числе больших языковых моделей, 2022–2023 гг. привело к масштабным трансформациям во многих сферах, благодаря новым возможностям работы с текстами, изображениями, видео звуком. Научное сообщество, предвосхищая масштабные изменения области образования под влиянием технологий на базе ГИИ, задумывается о поиске новых парадигм сфере образования. Данная работа исследует технологические возможности применения ГИИ системе образования, а также обозначает наметившуюся тенденцию масштабированию персонализированного Цель. Описание существующих образовательных практики их применения. Методы. Глубинные интервью экспертами интеллекта. Результаты. Дано описание сфер раскрыты преимущества, проблемы риски внедрения технологий, рассмотрена практика даны рекомендации образовательным организациям по адаптации цифровой трансформации, части ГИИ. Научная новизна состоит систематизации исследований различным направлениям использования образовательном процессе прогнозировании развития образовании. Практическая значимость. результаты исследования могут быть использованы педагогами для актуализации учебных курсов, изменению системы оценки контроля учащихся, обучающих программ учеников использованием понимания общемировой тенденции подхода образованию целом. Introduction. The emergence and mass distribution of generative artificial intelligence (GAI), including large language models in 2022–2023, have led to large-scale transformations many areas, thanks new opportunities for working with text, images, video, sound. scientific community, anticipating significant changes the field education under influence GAI-based technologies, is considering paradigms education. This work explores technological possibilities using GAI system highlights emerging trend toward scaling up personalised Aim. purpose study describe existing educational technologies based on GAI, as well practice their application. Methods. In-depth interviews experts intelligence. Results. described areas application system, revealed advantages, problems risks introducing considered applying proposed recommendations organisations adapting digital transformation, terms GAI. Scientific novelty lies systematising research different directions process forecasting further development Practical significance. results can be used by teachers update curriculums, change assessment control students, adapt training programmes capabilities students understand global changing approach general. Keywords: intelligence, ChatGPT, education, curriculum adaptation, customisation, learning.

Язык: Русский

Процитировано

1

ChatGPT in higher education: Investigating bachelor and master students’ expectations towards AI tool DOI
Artur Strzelecki

Education and Information Technologies, Год журнала: 2024, Номер unknown

Опубликована: Дек. 16, 2024

Язык: Английский

Процитировано

1

Generative artificial intelligence attitude analysis of undergraduate students and their precise improvement strategies: A differential analysis of multifactorial influences DOI
Lihui Sun, Liang Zhou

Education and Information Technologies, Год журнала: 2024, Номер unknown

Опубликована: Дек. 19, 2024

Язык: Английский

Процитировано

1

PJTEL Editorial 2022-2024 DOI Open Access
Thomas Cochrane, Vickel Narayan, Helen Sissons

и другие.

Pacific Journal of Technology Enhanced Learning, Год журнала: 2024, Номер 6(2), С. 23 - 32

Опубликована: Июнь 7, 2024

In this second editorial for the Pacific Journal of Technology Enhanced Learning, PJTEL, lead editors reflect upon first five years journal leading to indexing in EBSCO and explore impact statistics date. We also future directions themes particularly considering Generative AI on education.

Язык: Английский

Процитировано

0

The Realistic Dilemmas and Possible Paths of Artificial Intelligence Enabling Teacher Education DOI Creative Commons
Qin Zhou

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract This paper explains the dilemma of artificial intelligence in relation to development teacher education based on functional structure and activity characteristics education. Then, after designing a survey questionnaire factors affecting empowered by completing reliability test, collects initial data form distributing questionnaires analyzes detail least squares estimation mean, variance, standard deviation, correlation coefficient, regression coefficient needed process analyzing carry out analysis instances. The coefficients training, professional development, policy support, resource allocation, literacy, educational information technology behaviors, AI-enabled are 0.674 (0.003), 0.496 (0.001), 0.259 (0.009), 0.371 (0.008), 0.639 (0.004), 0.325 (0.007). Their corresponding were 0.616 (t=59.852, P=0.003), 0.021 (t=0.018, P=0.007), 0.078 (t=5.668, P=0.005), 0.032 (t=3.282, P=0.009), 0.239 (t=29.734, P=0.008), 0.137 (t=5.406, P=0.001), indicating that these have significant impact relationship

Язык: Английский

Процитировано

0