The Science of The Total Environment, Год журнала: 2024, Номер 957, С. 177693 - 177693
Опубликована: Ноя. 25, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2024, Номер 957, С. 177693 - 177693
Опубликована: Ноя. 25, 2024
Язык: Английский
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Июнь 5, 2024
Abstract Prediction of suspended sediment load (SSL) in streams is significant hydrological modeling and water resources engineering. Development a consistent accurate prediction model highly necessary due to its difficulty complexity practice because transportation vastly non-linear governed by several variables like rainfall, strength flow, supply. Artificial intelligence (AI) approaches have become prevalent resource engineering solve multifaceted problems modelling. The present work proposes robust incorporating support vector machine with novel sparrow search algorithm (SVM-SSA) compute SSL Tilga, Jenapur, Jaraikela Gomlai stations Brahmani river basin, Odisha State, India. Five different scenarios are considered for development. Performance assessment developed analyzed on basis mean absolute error (MAE), root squared (RMSE), determination coefficient (R 2 ), Nash–Sutcliffe efficiency (E NS ). outcomes SVM-SSA compared three hybrid models, namely SVM-BOA (Butterfly optimization algorithm), SVM-GOA (Grasshopper SVM-BA (Bat benchmark SVM model. findings revealed that successfully estimates high accuracy scenario V (3-month lag) discharge (current time-step 3-month as input than other alternatives RMSE = 15.5287, MAE 15.3926, E 0.96481. conventional performed the worst prediction. Findings this investigation tend claim suitability employed approach rivers precisely reliably. guarantees precision forecasted while significantly decreasing computing time expenditure, satisfies demands realistic applications.
Язык: Английский
Процитировано
28Environmental Pollution, Год журнала: 2024, Номер 351, С. 124040 - 124040
Опубликована: Апрель 27, 2024
Язык: Английский
Процитировано
12Atmospheric Pollution Research, Год журнала: 2024, Номер 15(6), С. 102125 - 102125
Опубликована: Март 20, 2024
Язык: Английский
Процитировано
9Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Июль 1, 2024
Electrical conductivity (EC) is widely recognized as one of the most essential water quality metrics for predicting salinity and mineralization. In current research, EC two Australian rivers (Albert River Barratta Creek) was forecasted up to 10 days using a novel deep learning algorithm (Convolutional Neural Network combined with Long Short-Term Memory Model, CNN-LSTM). The Boruta-XGBoost feature selection method used determine significant inputs (time series lagged data) model. To compare performance Boruta-XGB-CNN-LSTM models, three machine approaches-multi-layer perceptron neural network (MLP), K-nearest neighbour (KNN), extreme gradient boosting (XGBoost) were used. Different statistical metrics, such correlation coefficient (R), root mean square error (RMSE), absolute percentage error, assess models' performance. From years data in both rivers, 7 (2012-2018) training set, 3 (2019-2021) testing models. Application model forecasting day ahead showed that stations, can forecast parameter better than other models test dataset (R = 0.9429, RMSE 45.6896, MAPE 5.9749 Albert River, R 0.9215, 43.8315, 7.6029 Creek). Considering this 3-10 EC. results very capable next days. by increasing horizon from days, slightly decreased. study show be good soft computing accurately how will change rivers.
Язык: Английский
Процитировано
9Journal of Hydrology, Год журнала: 2024, Номер 640, С. 131704 - 131704
Опубликована: Июль 20, 2024
Язык: Английский
Процитировано
7Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124900 - 124900
Опубликована: Июль 30, 2024
Язык: Английский
Процитировано
7Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(22), С. 32382 - 32406
Опубликована: Апрель 23, 2024
Язык: Английский
Процитировано
4International Journal of Management Technology and Social Sciences, Год журнала: 2024, Номер unknown, С. 94 - 110
Опубликована: Май 20, 2024
Purpose: Maintaining agricultural output, protecting water supplies, and lessening environmental effects all depend on effective management. Through a comprehensive review of the literature an in-depth analysis various AI ML techniques, this paper aims to put light cutting-edge approaches used in irrigation scheduling predictive modeling. The goal research is determine advantages, disadvantages, future directions ML-based management systems by means methodical algorithms, data sources, applications. Additionally, study seeks demonstrate how data-driven methods can enhance systems' sustainability, accuracy, precision. Stakeholders agriculture, resource management, conservation make well-informed decisions maximize techniques having thorough understanding theoretical underpinnings practical applications models. also attempts tackle issues like scalability, model interpretability, lack when implementing solutions for In final form, review's conclusions advance our use improve resilience efficiency, supporting adaptive sustainable strategies face rising scarcity concerns climate change. Design/Methodology/Approach: order gather information study, several articles from reliable sources were analyzed compared. Objective: To provide current gaps prediction models best suggest using fill these gaps. Results/ Findings: response growing challenges change, paper's findings highlight transformative potential optimizing scheduling, enhancing resilience, increasing strategies. Originality/Value: This uniqueness significance come its modeling ideal scheduling. It provides insights into new their possible optimization sustainability. Type Paper: Literature Review.
Язык: Английский
Процитировано
4Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(6), С. 2489 - 2519
Опубликована: Март 16, 2024
Abstract This study investigates monthly streamflow modeling at Kale and Durucasu stations in the Black Sea Region of Turkey using remote sensing data. The analysis incorporates key meteorological variables, including air temperature, relative humidity, soil wetness, wind speed, precipitation. also accuracy multivariate adaptive regression (MARS) with Kmeans clustering (MARS-Kmeans) by comparing it single MARS, M5 model tree (M5Tree), random forest (RF), multilayer perceptron neural network (MLP). In first stage, principal component is applied to diverse input combinations, both without lagged (Q), resulting twenty-three twenty respectively. Results demonstrate critical role Q for improved accuracy, as models exhibit significant performance degradation. second stage involves a comparative MARS-Kmeans other machine-learning models, utilizing best-input combination. MARS-Kmeans, incorporating three clusters, consistently outperforms showcasing superior predicting streamflow.
Язык: Английский
Процитировано
3Neural Computing and Applications, Год журнала: 2024, Номер 36(21), С. 13087 - 13106
Опубликована: Апрель 24, 2024
Язык: Английский
Процитировано
3