RE-InCep-BT-:Resource-Efficient InCeptor Model for Brain Tumor Diagnostic Healthcare Applications in Computer Vision
Mobile Networks and Applications,
Год журнала:
2024,
Номер
unknown
Опубликована: Апрель 15, 2024
Язык: Английский
Integrating Deep Learning and Imaging Techniques for High-Precision Brain Tumor Analysis
Communications in computer and information science,
Год журнала:
2025,
Номер
unknown, С. 53 - 67
Опубликована: Янв. 1, 2025
Язык: Английский
Computer-aided diagnosis for multi-class classification of brain tumors using CNN features via transfer-learning
Multimedia Tools and Applications,
Год журнала:
2025,
Номер
unknown
Опубликована: Март 15, 2025
Язык: Английский
An XAI-Enhanced EfficientNetB0 Framework for Precision Brain Tumor Detection in MRI Imaging
Journal of Neuroscience Methods,
Год журнала:
2024,
Номер
410, С. 110227 - 110227
Опубликована: Июль 20, 2024
Язык: Английский
Improving Sentiment Analysis in Digital Marketplaces through SVM Kernel Fine-Tuning
International Journal of Computing and Digital Systems,
Год журнала:
2024,
Номер
15(1), С. 159 - 171
Опубликована: Апрель 23, 2024
The
rapid
growth
of
the
online
market,
particularly
in
digital
realm,
has
spurred
need
for
in-depth
studies
regarding
marketing
strategies
through
public
opinion,
especially
on
platforms
like
Twitter.The
sentiments
expressed
customer
tweets
hold
significant
insights
into
their
satisfaction
or
dissatisfaction
levels
with
a
service.Therefore,
use
ML
algorithms
sentiment
analysis
is
imperative
to
detect
whether
such
comments
lean
towards
positivity
negativity
service.This
research
focuses
three
major
e-commerce
Indonesia:
Tokopedia,
Shopee,
and
Lazada,
utilization
classification
process
involves
various
stages,
including
preprocessing,
feature
extraction
selection,
data
splitting
classification,
evaluation.The
selection
both
linear
non-linear
SVM
models
as
focus
this
based
ability
handle
large
complex
datasets.The
kernel
chosen
its
proficiency
cases
relationship
between
features
class
labels,
while
provides
flexibility
dealing
relationships.Based
evaluation
results
model
dataset,
it
found
that
polynomial
highest
accuracy
value
93%,
training
share
85%.This
strong
prediction
capabilities
precision
93%
negative
positive
labels.Although
other
kernels
showed
solid
performance,
provided
most
optimal
context
marketplace
using
from
Twitter
Язык: Английский
Optimizing Brain Tumor Mri Classification Using Modified Vgg16 Model
Ankita Mitra,
K. Sridar,
S. Rathna
и другие.
Опубликована: Авг. 23, 2024
Язык: Английский
Brain tumor diagnosis in MRI scans images using Residual/Shuffle Network optimized by augmented Falcon Finch optimization
Scientific Reports,
Год журнала:
2024,
Номер
14(1)
Опубликована: Ноя. 13, 2024
Brain
tumor
diagnosis
is
an
important
task
in
prognosing
and
treatment
planning
of
the
patients
with
brain
cancer.
meantime,
using
Magnetic
Resonance
Imaging
(MRI)
as
a
commonly
used
non-invasive
imaging
technique
provide
experts
helpful
view
for
detecting
tumors.
While
deep
learning
methods
have
shown
significant
success
analyzing
medical
images,
they
often
require
careful
design
architecture
tuning
hyperparameters
to
achieve
optimal
results.
This
study
presents
new
approach
diagnosing
tumors
MRI
scans
learning,
focusing
on
Residual/Shuffle
Networks.
The
designed
network
structures
offer
efficient
results
when
compared
traditional
models.
To
enhance
proposed
classification,
modified
metaheuristic
algorithm
named
Augmented
Falcon
Finch
Optimization
(AFFO)
introduced.
AFFO
utilizes
bio-inspired
principles
effectively
search
best
hyperparameter
configurations,
thereby
enhancing
reliability
accuracy
model.
performance
method
evaluated
standard
dataset
existing
techniques,
including
ResNet,
AlexNet,
VGG-16,
Inception
V3,
U-Net
illustrate
effectiveness
combining
Networks
diagnosis.
Язык: Английский