Dynamic flood risk prediction in Houston: a multi-model machine learning approach DOI Creative Commons

S. Mishra,

A. Bajpai, Agradeep Mohanta

и другие.

Geocarto International, Год журнала: 2024, Номер 39(1)

Опубликована: Янв. 1, 2024

Язык: Английский

Optimizing SVM hyperparameters for satellite imagery classification using metaheuristic and statistical techniques DOI Creative Commons
Lydia Wahid Rizkallah

International Journal of Data Science and Analytics, Год журнала: 2025, Номер unknown

Опубликована: Апрель 17, 2025

Язык: Английский

Процитировано

0

Adversarial Convolutional Neural Network for Predicting Blood Clot Ischemic Stroke DOI Creative Commons
Moshood A. Hambali,

Paul A. Agwu

Journal of Computing Theories and Applications, Год журнала: 2024, Номер 2(1), С. 51 - 64

Опубликована: Июнь 1, 2024

Digital Pathology Image Analysis (DPIA) is one of the areas where deep learning (DL) techniques offer modern, cutting-edge functionality. Convolutional Neural Network (CNN) technology outperforms competition in classification, segmentation, and detection tasks while being just numerous DL techniques. Classification, methods can often be used to address DPIA concerns. Some difficulties also resolved using pre- post-processing However, other CNN models have been investigated for use addressing DPIA-related issues. Furthermore, research seeks explore how susceptible model adversarial attacks suggest strategies counteract them. To predict ischemic strokes caused by blood clots, authors this study developed with a pixel brightness transformation (PBT) technique image enhancement several approaches augmentation increase provide more diverse features. Also, training was integrated into train perturbed data order assess impact noise at different stages training. Several metrics, including precision, F1-score, accuracy, recall, are utilized experiments' effectiveness. The findings indicate that employing transfer achieved an accuracy up 97% ReLU activation function. helps improve model.

Язык: Английский

Процитировано

1

Dynamic flood risk prediction in Houston: a multi-model machine learning approach DOI Creative Commons

S. Mishra,

A. Bajpai, Agradeep Mohanta

и другие.

Geocarto International, Год журнала: 2024, Номер 39(1)

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0