Exhaust Gas Heat Recovery from a Marine Engine Using a Thermal Oil System DOI Creative Commons
Van Vang Le, Xuan Quang Duong,

Văn Hùng Bùi

и другие.

Polish Maritime Research, Год журнала: 2024, Номер 31(4), С. 89 - 99

Опубликована: Дек. 1, 2024

Abstract The recovery of exhaust gas from marine engines is gaining attention in regard to saving fuel and improving system efficiency. Waste heat particularly beneficial for providing thermal electric power, offers efficient solutions both economic environmental challenges. use waste technology the opportunity lower consumption improve systems, this approach also falls line with stringent emissions guidelines International Maritime Organization. This paper describes a unique which oil used feed cargo, order exploitation costs while addressing issues. CFD simulations unit plain finned helix coils provide important insights into their performance pressure characteristics. results indicate that incorporation fins could markedly enhance transfer performance. Finned configurations are found have higher outlet temperatures, reaching up 145.4°C case rectangular configuration. In general, study contributes advancement technologies applications.

Язык: Английский

Development of advanced machine learning for prognostic analysis of drying parameters for banana slices using indirect solar dryer DOI Creative Commons
Van Giao Nguyen, Prabhu Paramasivam, Marek Dzida

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер 60, С. 104743 - 104743

Опубликована: Июнь 24, 2024

In this study, eXtreme Gradient Boosting (XGBoost) and Light (LightGBM) algorithms were used to model-predict the drying characteristics of banana slices with an indirect solar drier. The relationships between independent variables (temperature, moisture, product type, water flow rate, mass product) dependent (energy consumption size reduction) established. For energy consumption, XGBoost demonstrates superior performance R2 0.9957 during training 0.9971 testing, alongside minimal MSE 0.0034 0.0008 testing phase indicating high predictive accuracy low error rates. Conversely, LGBM shows lower values (0.9061 training, 0.8809 testing) higher 0.0747 0.0337 reflecting poorer performance. Similarly, for shrinkage prediction, outperforms LGBM, evidenced by (0.9887 0.9975 (0.2527 0.4878 testing). comparative statistics showed that regularly outperformed LightGBM. game theory-based Shapley functions revealed temperature types most influential features model. These findings illustrate practical applicability LightGBM models in food operations towards optimizing conditions, improving quality, reducing consumption.

Язык: Английский

Процитировано

6

Leveraging Artificial Intelligence to Enhance Port Operation Efficiency DOI Creative Commons
Gia Huy Dinh, Hoang Thai Pham, Lam Canh Nguyen

и другие.

Polish Maritime Research, Год журнала: 2024, Номер 31(2), С. 140 - 155

Опубликована: Июнь 1, 2024

Abstract Maritime transport forms the backbone of international logistics, as it allows for transfer bulk and long-haul products. The sophisticated planning required this form transportation frequently involves challenges such unpredictable weather, diverse types cargo kinds, changes in port conditions, all which can raise operational expenses. As a result, accurate projection ship’s total time spent port, anticipation potential delays, have become critical effective activity management. In work, we aim to develop management system based on enhanced prediction classification algorithms that are capable precisely forecasting lengths ship stays delays. On both training testing datasets, XGBoost model was found consistently outperform alternative approaches terms RMSE, MAE, R2 values turnaround waiting period models. When used model, had lowest RMSE 1.29 during 0.5019 testing, also achieved MAE 0.802 0.391 testing. It highest 0.9788 0.9933 Similarly, outperformed random forest decision tree models, with greatest phases.

Язык: Английский

Процитировано

4

Artificial Intelligence in Maritime Transportation: A Comprehensive Review of Safety and Risk Management Applications DOI Creative Commons
Irmina Durlik, Tymoteusz Miller, Ewelina Kostecka

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(18), С. 8420 - 8420

Опубликована: Сен. 19, 2024

Maritime transportation is crucial for global trade but faces significant risks and operational challenges. Ensuring safety essential protecting lives, the environment, economic stability. This review explores role of artificial intelligence (AI) in enhancing maritime risk management. Key AI applications include analysis, crew resource management, hazardous material handling, predictive maintenance, navigation systems. systems identify potential hazards, provide real-time decision support, monitor materials, predict equipment failures, optimize shipping routes. Case studies, such as Wärtsilä’s Fleet Operations Solution ABB Ability™ Marine Pilot Vision, illustrate benefits improving efficiency. Despite these advancements, integrating poses challenges related to infrastructure compatibility, data quality, regulatory issues. Addressing successful implementation. highlights AI’s transform safety, emphasizing need innovation, standardized practices, robust frameworks achieve safer more efficient operations.

Язык: Английский

Процитировано

4

АНАЛІЗ ВИКЛИКІВ ТА МОЖЛИВОСТЕЙ ЗАСТОСУВАННЯ ШТУЧНОГО ІНТЕЛЕКТУ В УПРАВЛІННІ МОРСЬКИМИ ВАНТАЖНИМИ ПОТОКАМИ DOI Open Access

Олександр Коростін

Наука і техніка сьогодні, Год журнала: 2024, Номер 7(35)

Опубликована: Авг. 2, 2024

АНАЛІЗ ВИКЛИКІВ ТА МОЖЛИВОСТЕЙ ЗАСТОСУВАННЯ ШТУЧНОГО ІНТЕЛЕКТУ В УПРАВЛІННІ МОРСЬКИМИ ВАНТАЖНИМИ ПОТОКАМИАнотація.Управління морськими вантажними потоками є надзвичайно складним завданням, що вимагає високої точності, координації та швидкої реакції на зміни.Сучасні виклики, з якими зіштовхується ця сфера, потребують новітніх технологічних рішень для забезпечення максимальної ефективності, безпеки стійкості операцій.Впровадження штучного інтелекту у сферу управління відкриває нові можливості підвищення зниження витрат покращення логістичних операцій.Водночас, використання ШІ морській логістиці супроводжується численними викликами обмеженнями, які ретельного аналізу вирішення

Процитировано

0

Exhaust Gas Heat Recovery from a Marine Engine Using a Thermal Oil System DOI Creative Commons
Van Vang Le, Xuan Quang Duong,

Văn Hùng Bùi

и другие.

Polish Maritime Research, Год журнала: 2024, Номер 31(4), С. 89 - 99

Опубликована: Дек. 1, 2024

Abstract The recovery of exhaust gas from marine engines is gaining attention in regard to saving fuel and improving system efficiency. Waste heat particularly beneficial for providing thermal electric power, offers efficient solutions both economic environmental challenges. use waste technology the opportunity lower consumption improve systems, this approach also falls line with stringent emissions guidelines International Maritime Organization. This paper describes a unique which oil used feed cargo, order exploitation costs while addressing issues. CFD simulations unit plain finned helix coils provide important insights into their performance pressure characteristics. results indicate that incorporation fins could markedly enhance transfer performance. Finned configurations are found have higher outlet temperatures, reaching up 145.4°C case rectangular configuration. In general, study contributes advancement technologies applications.

Язык: Английский

Процитировано

0