Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster DOI Creative Commons
Nils Eckstein, Alexander Shakeel Bates, Andrew Champion

и другие.

Cell, Год журнала: 2024, Номер 187(10), С. 2574 - 2594.e23

Опубликована: Май 1, 2024

High-resolution electron microscopy of nervous systems has enabled the reconstruction synaptic connectomes. However, we do not know sign for each connection (i.e., whether a is excitatory or inhibitory), which implied by released transmitter. We demonstrate that artificial neural networks can predict transmitter types presynapses from micrographs: network trained to six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy 87% individual synapses, 94% neurons, and 91% known cell across D. melanogaster whole brain. visualize ultrastructural features used prediction, discovering subtle but significant differences between phenotypes. also analyze distributions brain find neurons develop together largely express only one fast-acting GABA). hope our publicly available predictions act as accelerant neuroscientific hypothesis generation fly.

Язык: Английский

A connectome and analysis of the adult Drosophila central brain DOI Creative Commons
Louis K. Scheffer, C. Shan Xu, Michał Januszewski

и другие.

eLife, Год журнала: 2020, Номер 9

Опубликована: Сен. 3, 2020

The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction brain fruit fly Drosophila melanogaster . Improved include procedures to prepare, image, align, segment, find synapses in, proofread such data sets. define cell types, refine computational compartments, provide an exhaustive atlas examples many them novel. detailed consisting neurons their chemical most central brain. make public simplify access, reducing effort needed answer circuit questions, linking defined by our analysis with genetic reagents. Biologically, we examine distributions connection strengths, motifs on different scales, electrical consequences compartmentalization, evidence that maximizing packing density is important criterion in evolution fly’s

Язык: Английский

Процитировано

978

The connectome of the adult Drosophila mushroom body provides insights into function DOI Creative Commons
Feng Li, Jack Lindsey, Elizabeth C. Marin

и другие.

eLife, Год журнала: 2020, Номер 9

Опубликована: Дек. 14, 2020

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) well positioned for developing and testing such approach due to its conserved architecture, recently completed dense connectome, extensive prior experimental studies of roles learning, memory, activity regulation. Here, we identify new components MB circuit Drosophila, including visual input output neurons (MBONs) with direct connections descending neurons. We find unexpected structure sensory inputs, transfer information different modalities MBONs, modulation that dopaminergic (DANs). provide insights into circuitry used integrate outputs, between central complex inputs DANs, feedback MBONs. Our results a foundation further theoretical work.

Язык: Английский

Процитировано

347

Connectomes across development reveal principles of brain maturation DOI
Daniel Witvliet, Ben Mulcahy, James K. Mitchell

и другие.

Nature, Год журнала: 2021, Номер 596(7871), С. 257 - 261

Опубликована: Авг. 4, 2021

Язык: Английский

Процитировано

336

A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection DOI Creative Commons
Brad K. Hulse, Hannah Haberkern, Romain Franconville

и другие.

eLife, Год журнала: 2021, Номер 10

Опубликована: Окт. 26, 2021

Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which experimentally challenging study. In insects, circuit dynamics a region called the central complex (CX) enable directed locomotion, sleep, and context- experience-dependent spatial navigation. We describe first complete electron microscopy-based connectome of

Язык: Английский

Процитировано

298

What is a cell type and how to define it? DOI Creative Commons
Hongkui Zeng

Cell, Год журнала: 2022, Номер 185(15), С. 2739 - 2755

Опубликована: Июль 1, 2022

Язык: Английский

Процитировано

276

A connectomic study of a petascale fragment of human cerebral cortex DOI Creative Commons
Alexander Shapson-Coe, Michał Januszewski, Daniel R. Berger

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2021, Номер unknown

Опубликована: Май 30, 2021

Abstract We acquired a rapidly preserved human surgical sample from the temporal lobe of cerebral cortex. stained 1 mm 3 volume with heavy metals, embedded it in resin, cut more than 5000 slices at ∼30 nm and imaged these sections using high-speed multibeam scanning electron microscope. used computational methods to render three-dimensional structure containing 57,216 cells, hundreds millions neurites 133.7 million synaptic connections. The 1.4 petabyte microscopy volume, segmented cell parts, blood vessels, myelin, inhibitory excitatory synapses, 104 manually proofread cells are available peruse online . Many interesting unusual features were evident this dataset. Glia outnumbered neurons 2:1 oligodendrocytes most common type volume. Excitatory spiny comprised 69% neuronal population, synapses also majority (76%). drive onto was biased strongly toward excitation (70%) case for interneurons (48%). Despite incompleteness automated segmentation caused by split merge errors, we could automatically generate (and then validate) connections between neuron types both within layers. In studying found that deep layer can be classified into new subsets, based on structural connectivity differences, chandelier not only innervate initial segments as previously described, but each other’s segments. Furthermore, among thousands weak established neuron, there exist rarer highly powerful axonal inputs establish multi-synaptic contacts (up ∼20 synapses) target neurons. Our analysis indicates strong specific, allow small numbers axons have an outsized role activity some their postsynaptic partners.

Язык: Английский

Процитировано

261

The connectome of an insect brain DOI
Michael Winding, Benjamin D. Pedigo, Christopher L. Barnes

и другие.

Science, Год журнала: 2023, Номер 379(6636)

Опубликована: Март 10, 2023

Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped synaptic-resolution connectome an entire insect ( Drosophila larva) with rich behavior, including learning, value computation, action selection, comprising 3016 548,000 synapses. characterized neuron types, hubs, feedforward feedback pathways, as well cross-hemisphere brain-nerve cord interactions. found pervasive multisensory interhemispheric integration, highly recurrent architecture, abundant from descending neurons, multiple novel circuit motifs. The brain’s most circuits comprised input output learning center. Some structural features, multilayer shortcuts nested loops, resembled state-of-the-art deep architectures. identified provides a basis future experimental theoretical studies neural circuits.

Язык: Английский

Процитировано

255

Large-scale neural recordings call for new insights to link brain and behavior DOI
Anne E. Urai, Brent Doiron, Andrew M. Leifer

и другие.

Nature Neuroscience, Год журнала: 2022, Номер 25(1), С. 11 - 19

Опубликована: Янв. 1, 2022

Язык: Английский

Процитировано

253

Architectures of neuronal circuits DOI
Liqun Luo

Science, Год журнала: 2021, Номер 373(6559)

Опубликована: Сен. 2, 2021

Although individual neurons are the basic unit of nervous system, they process information by working together in neuronal circuits with specific patterns synaptic connectivity. Here, I review common circuit motifs and architectural plans used diverse brain regions animal species. also consider how these architectures assemble during development might have evolved. Understanding connectivity can implement neural computations will help to bridge huge gap between biology neuron function entire brain, allow us better understand basis behavior, may inspire new advances artificial intelligence.

Язык: Английский

Процитировано

226

FlyWire: online community for whole-brain connectomics DOI
Sven Dorkenwald, Claire McKellar, Thomas Macrina

и другие.

Nature Methods, Год журнала: 2021, Номер 19(1), С. 119 - 128

Опубликована: Дек. 23, 2021

Язык: Английский

Процитировано

224